
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Lucid Property-Based Testing
Anonymous Author(s)

@given(trees(), ints(), ints())
def test_insert_lookup(t, k, v):

assume(is_red_black_tree(t))
event("size", payload=size(t))
assert lookup(insert(k, v, t), k) == v

Figure 1: The Lucid interface for lucid
property-based testing. A developer can use
Lucid during their automated testing
process to see a novel ensemble of
visualizations that can help them to better
evaluate their tests.

ABSTRACT

Software developers increasingly rely on automated methods to
assess the correctness of their code. One such method is property-
based testing (PBT), wherein a test harness generates hundreds
or thousands of inputs and checks the outputs of the program on
those inputs using parametric properties. Though powerful, PBT
itself induces a sizable gulf of evaluation: developers need to put in
nontrivial effort to understand how well the different test inputs
exercise the software under test. To bridge this gulf, we propose
lucid property-based testing, an interaction paradigm to support
sensemaking for PBT effectiveness. Guided by a formative design
exploration, we designed and implemented Lucid, an interface that
supports lucid PBT through interactive, configurable views of test
behavior with tight integrations into modern developer testing
workflow. These views help developers explore global testing be-
havior and individual example attributes alike. To accelerate the
development of powerful, interactive PBT tools, we define a stan-
dard for PBT test reporting and integrate it with a widely used PBT
library. A self-guided online usability study revealed that Lucid’s
views lead to better assessments of software testing effectiveness.

KEYWORDS

Randomized testing, property-based testing (PBT), visual feedback,
multiple program executions

ACM Reference Format:

Anonymous Author(s). 2024. Lucid Property-Based Testing. In The 37th

Annual ACM Symposium on User Interface Software and Technology (UIST

’24), October 13–October 16, 2024, Pittsburgh, PA, USA. ACM, New York, NY,
USA, 16 pages.

UIST ’24, October 13–October 16, 2024, Pittsburgh, PA, USA

2024.

1 INTRODUCTION

Software developers work hard to build systems that behave as in-
tended. But software is rarely 100% correct when first implemented,
so developers also write tests to validate their work, detect bugs,
and check that bugs stay fixed. Traditionally, these tests take the
form of manually written “example-based” tests, where developers
write out specific sample inputs together with expected outputs;
but this process is labor intensive and can miss bugs when the
sample inputs are too sparse. An alternative approach uses auto-
mated techniques to supplement or replace example-based tests.
One such technique is property-based testing (PBT), which automat-
ically samples many program inputs from a random distribution
and checks, for each one, that the system’s behavior satisfies a set
of developer-provided properties. Used well, this leads to testing
that is more thorough and less laborious; indeed, PBT has proven
effective in identifying subtle bugs in a wide variety of real-world
settings, including telecommunications software [3], replicated file
and key-value stores [6, 39], automotive software [4], and other
complex systems [38].

Of course, automation comes with tradeoffs, and PBT is no ex-
ception. In PBT, there are often too many automatically generated
test inputs for a developer to examine every one, creating a gulf
of evaluation for test suite quality. Indeed, in a recent study of the
human factors of PBT [24], developers reported having difficulty
understanding what was really being tested.

For example, suppose a developer is testing some mathematical
function using randomly generated floating-point numbers. The
developer might have a variety of questions about their test suite
quality. They might ask if the distribution is broad enough (e.g., is it
stuck between 0 and 1), or too broad (e.g., does it span all possible
floats, even if the function can only take positive ones). Or they may

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

UIST ’24, October 13–October 16, 2024, Pittsburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

wonder if the distribution misses corner-cases like 0 or -1. Perhaps
most importantly, they may want to know if the data generator
produces too many malformed or invalid test inputs (e.g., NaN) that
cannot be used for testing at all. State-of-the-art PBT tooling does
not give adequate tools for answering these kinds of questions: any
of these erroneous situations could go unnoticed because necessary
information is not apparent to the user. As a result, developers
may not realize that their tests are not thoroughly exercising some
important system behaviors.

This gulf of evaluation presents an opportunity to rethink user
interfaces for testing. HCI has made strides in helping developers
make sense of large amounts of structured program data, whether
by revealing patterns that manifest in many programs [20, 22, 30,
87] or comparing the behavior of program variants [78, 81, 90]. As
developers adopt PBT, it is critical to tackle the related problem
of helping programmers understand a summary of hundreds or
thousands of executions of a single test.

To address this problem, we propose lucid property-based test-

ing, a novel interaction paradigm for supporting sensemaking and
exploration of distributions of test inputs, which is informed by a re-
view of PBT usability and evolved through iterative design with the
help of experienced PBT users. We embody the lucid PBT approach
in an interface called Lucid, which gives developers a novel ensem-
ble of visualizations, fine-tuned to the PBT setting and enriched
with lightweight affordances to support exploration. These provide
high-level insight about the distribution of test inputs as well as
various aspects of test efficiency (see Figure 1). Lucid also supports
visualization and rapid drill-down into user-defined attributes of
input data, taking advantage of existing hooks in PBT libraries.

To understand whether Lucid actually changes how developers
understand their tests, we conducted a 40-participant, self-guided,
online study. In this study, participants were asked to view test
distributions and rank them according to their power to identify
program defects. Compared to using a standard PBT tool, using
Lucid led to better judgments about the bug-finding power of test
distributions.

To encourage broad adoption of lucid property-based testing, we
further define OpenLucid, a standard format for reporting results
of PBT. When a PBT framework generates data in this format, its
results can be viewed in Lucid and perhaps other interfaces sup-
porting the same standard in the future. We integrated OpenLucid
into the main branch of Hypothesis [50], the most widely-used PBT
framework, enabling lucid property-based testing with Hypothesis
and showing the way forward for other frameworks.

After discussing background (§2) and related work (§3), we offer
the following contributions:

• Wearticulate design considerations for supporting lucid property-
based testing, motivated by a formative study with experi-
enced PBT users. (§4)

• We present the design of Lucid, an interface that helps devel-
opers evaluate the quality of their testing with an ensemble of
visualizations fine-tuned to PBTwith lightweight affordances
to support exploration. (§5)

• We define the OpenLucid format for collecting and reporting
PBT data to help standardize lucid PBT across different PBT
frameworks. (§6)

• We evaluate Lucid in an online study, demonstrating that
Lucid guides developers to significantly better assessments
of test suite effectiveness. (§7)

We conclude with directions for future work (§8), including other
automated testing disciplines that can benefit from lucid interfaces.

2 BACKGROUND

We begin by describing property-based testing and reviewing what
is known about its usability and contexts of use.

2.1 Property-Based Testing

In traditional unit testing, developers think up examples that demon-
strate the ways a function is supposed to behave, writing one test
for each envisioned behavior. For example, this unit test checks
that inserting a key "k" and value 0 into a red–black tree [84] and
then looking up "k" results in the value 0:
def test_insert_example():

t = Empty()
assert lookup(insert("k", 0, t), "k") == 0

If one wanted to test more thoroughly, they could painstakingly
write dozens of tests like this for many different example trees, keys,
and values. Property-based testing offers an alternative, succinct
way to express many tests at once:
@given(trees(), integers(), integers())
def test_insert_lookup(t, k, v):

assume(is_red_black_tree(t))
assert lookup(insert(k, v, t), k) == v

This test is written in Hypothesis [50], a popular PBT library in
Python. It randomly generates triples of trees, keys, and values,
and for each triple, checks a parameterized property that resembles
a unit-test assertion. This single test specification represents an
infinite collection of concrete individual tests, and using it can lead
to more thorough testing (compared to a unit test suite), since the
random generator may produce examples the user might not have
thought of.

2.2 PBT Process and Pitfalls

At its core, the practice of PBT involves three distinct steps: defin-
ing executable properties, constructing random input generators,
and reviewing the result of checking these properties against a
large number of sampled inputs; challenges can arise at any of
these stages. We are focused here on the third stage: helping de-
velopers review the results of testing, in part to support the (often
iterative) process of refining and improving the generators con-
structed in the second step. For instance, in the example above,
a developer might accidentally write a trees() generator that
only produces the Empty() tree, in which case their property will
be checked only against a single test input (over and over). Or, if
the generator’s strategy is not quite so broken but still too naïve,
it might fail to produce very many trees that actually pass the
assume(is_red_black_tree(t)) guard.

In cases like these, developers need to remember that, although
all their tests are succeeding, this does not necessarily mean their
code is correct [48]: they may need to improve their generators
to start seeing failing tests. Unfortunately, with conventional PBT

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Lucid Property-Based Testing UIST ’24, October 13–October 16, 2024, Pittsburgh, PA, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

tools, developers may feel they don’t have easy access to this knowl-
edge [24]. While the programming languages community is contin-
ually developing better techniques for generating well-distributed
inputs [27, 47, 57, 75, etc.], developers still need to be able to check
that the generators they are using are actually fit for the job.

3 RELATEDWORK

In this section we situate our work on lucid PBT within the larger
area of programming tools research.

3.1 Current Affordances

What support do PBT frameworks provide today for developers to
inspect test input distributions? We surveyed the state of practice
in the most popular PBT frameworks (by GitHub stars) across
six different languages: Python [50], TypeScript / JavaScript [17],
Rust [19], Scala [61], Java [35], and Haskell [12]. These frameworks
provide users with the following kinds of information. (A detailed
comparison of framework features can be found in Appendix A.)

Raw Examples. All of these frameworks could print generated
inputs to the terminal. Some (3/6) provided a flag or option to do
so; the others did not provide this feature natively, although users
might simply print examples to the terminal themselves.

Number of Tests Run vs. Discarded. Many frameworks (4/6) report
how many examples were run vs. discarded (because they did not
pass a quality filter), sometimes (2/6) hidden behind a command
line flag.

Event / Label Aggregation. Many frameworks (4/6) could report
aggregates of user-defined features of the data distribution—e.g.,
lengths of generated lists. Information about such features typically
appeared in a simple textual list or table, as in this example from
QuickCheck [76]:

7% length of input is 7
6% length of input is 3
5% length of input is 4
...

I.e., among the generated lists for some test run, 7% were 7 elements
long, 6% were 3 elements long, etc.

Time. One framework reported how long the test run took.
Warnings. One framework providedwarnings about test distribu-

tions, in particular warning users when their generators produced
a very high proportion of discarded examples.

The affordances for evaluation available in existing frameworks
are situationally useful, but inconsistently implemented and incom-
plete. In §5 and §6 we discuss how Lucid improves on the state of
the art.

3.2 Interactive Tools for Testing

Some of the earliest research on improved interfaces for testing
focused on spreadsheets. Rothermel et al. [67] proposed a model of
testing called “what you see is what you test” (WYSIWYT), wherein
users “test” their spreadsheet by checking values that they see and
marking them as correct. This approach has appeared in many do-
mains of programming, including visual dataflow [43] and screen

transition languages [7]. Complementary to WYSIWYT are fea-
tures that encourage programmers’ curiosity [85], for instance by
detecting and calling attention to likely anomalies [56, 85].

Many of the testing tools developed by the HCI community have
sought to accelerate manual testing with rich, explorable traces
of program behavior [8, 15, 52, 53, 62]. These tools instrument a
program, record its behavior during execution, and then provide
visualizations and augmentations to source code to help program-
mers pinpoint what is going wrong in their code. Tools can also help
programmers create automated tests from user demonstrations. For
instance, Sikuli Test [10] lets application developers create auto-
mated tests of interfaces by demonstrating a usage flow with the
interface and then entering assertions of what interface elements
should or should not be on the screen at the end of the flow.

Recent research has explored new ways to bring users into the
loop of randomized testing. One research system, NaNoFuzz [14],
shows programmers examples of program outputs and helps them
to notice problematic results like NaN or crash failures. NaNoFuzz
is superficially the closest comparison available for Lucid, but the
two serve different, complementary purposes. NanoFuzz’s strengths
reside in calling attention to failures; Lucid’s strengths reside in
exposing patterns in input distributions. One could imagine a user
leveraging both in concert during the testing process.

3.3 Making Sense of Program Executions

In a broad sense, Lucid’s aim is to help developers reason about the
behavior of a program across many executions. This problem has
been explored by the HCI community. Tools have been developed
to reveal the behavior of a program over many synthesized exam-
ples [89], and of an expression over many loops [32, 42, 49, 72]. The
problem of understanding input distributions has been of interest
in the area of AI interpretability, where tools have been built to sup-
port inspection of input distributions and corresponding outputs
(e.g., [33, 34]). Lucid’s aim is to tailor data views and exploration
mechanisms to tightly fit the concerns and context of randomized
testing with professional-grade software and potentially-complex
inputs (e.g., logs, trees).

Prior work has sought to help programmers make sense of sim-
ilarities and differences across sets of programs. Some of these
tools cluster programs on the basis of aspects, semantics, or struc-
ture [21, 23, 30, 88]. Others highlight differences in the source and/or
behavior of program variants [68, 78, 81, 90]. Lucid itself does some
lightweight clustering of test cases (in this case, input examples),
and affordances for program differencing could be brought to Lu-
cid to help programmers pinpoint where some instantiations of a
property fail and others succeed.

3.4 Formal Methods in the Editor

Property-based testing can be seen as a kind of lightweight formal

method [86], in that it allows programmers to specify precisely the
behavior of their program and then verify that the specification is
satisfied. Lucid joins a family of research projects that bring formal
methods into the interactive editing experience, whether to support
repetitive edits [51, 60], code search [58], program synthesis [16,
64, 82, 89], or bidirectional editing of programs and outputs [31].

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

UIST ’24, October 13–October 16, 2024, Pittsburgh, PA, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

4 FORMATIVE RESEARCH

Our vision of lucid PBT is informed by formative research into
the user experience of PBT. Below, we describe our methods for
formative research (§4.1), followed by a crystallization of user needs
(§4.2) and a set of design considerations for lucid PBT (§4.3).

4.1 Methods

To better understand what developers need in understanding their
PBT distributions, we collected two kinds of data.

4.1.1 Review of related work. We reviewed user needs relating to
evaluating testing effectiveness as discussed at length in Goldstein
et al. [24]’s recent paper on the human factors of PBT.

4.1.2 Iterative design feedback. As we developed Lucid, we contin-
ually sought and integrated feedback on its design from experienced
users of PBT.We recruited 5 such users through X (formerly Twitter)
and our personal networks. We refer to them as P1–P5.

For each of these users, we conducted a 1-hour observation and
interview session. Each session was split into two parts. In the first
part, participants showed us PBT tests they had written, described
those tests, and answered questions about how they evaluate (or
could evaluate) whether those tests are effective. In the second part,
participants installed our then-current prototype and used it to
explore the effectiveness of their own tests.1 Study sessions were
staggered throughout the design process. We altered the design to
incorporate feedback after each session.

Initial prototype. All Lucid prototypes were developed as VS-
Code [55] extensions. All prototypes focused on providing visual
summaries of PBT data in a web view pane in the editor. The initial
Lucid prototype was informed by observations from Goldstein et al.
[24]’s study and the authors’ experiences using and building PBT
tools. The initial prototype was published as prior non-archival
work, an anonymized version of which is available as supplemental
material; the prototype summarized the following aspects of test
data:

• “Number of Unique Inputs”: New PBT users are sometimes
surprised that their test harness produces duplicate data.
Knowing how many unique inputs were tested is therefore
one important signal of the test harness’ efficiency.

• “Proportion of Valid Inputs”: As discussed in §2.2, PBT test
harnesses sometimes discard data that does not satisfy nec-
essary preconditions. Developers need to know how much
of the data is discarded and how much is kept.

• “Size Distribution”: Testers need to keep track of the size of
their inputs. It is commonly believed in the PBT community
that software can be tested well by exhaustive sets of small
inputs (i.e., the small scope hypothesis [2]), and alternatively,
that large tests have a combinatorial advantage [37] in finding
more bugs.2 Whichever viewpoint a tester subscribes to, it is
important to know the sizes of inputs.

1P5 showed us older code that they no longer had the test runner for, so they only saw
Lucid running on our examples.
2The truth seems to be that each of these viewpoints is correct in some situations; a
recent study [71] has a nice discussion.

Analysis. Interviews were automatically transcribed by video
conferencing software3, and analyzed via thematic analysis [5].

4.2 Testing Goals and Strategies

The first result of our formative research was a clarification of
PBT users’ goals and strategies when they were attempting to
determine the effectiveness of their tests. One might imagine that
testing effectiveness could be measured by the proportion of bugs
found, but this is a fantastical measure: if we had it, we would
know what all the bugs are and wouldn’t need to do any testing! As
we found in our study sessions, developers pay attention to proxy
metrics to gain confidence in their test suite. Ideally, PBT tools will
surface these metrics. Here, we discuss the various metrics that
developers paid attention to and how they measured them.

4.2.1 Test Input Distribution. Participants reported checking that
their distributions covered potential edge cases like 𝑥 = 0, 𝑥 = −1,
or 𝑥 = Integer.MAX_VALUE (P2), which are widely understood as
bug-triggering values. They also checked that their distributions
covered regions in the input space like 𝑥 = 0, 𝑥 < 0, and 𝑥 > 0 (P2,
P4, P5); this kind of coverage is similar to notions of “combinatorial
coverage” discussed in the literature [26, 46].

Multiple participants (P1, P3, P4) wanted to know that their test
data was realistic. Their justification was that the most important
bugs are the ones that users were likely to hit. Another partici-
pant (P5) wanted their test data to be uniformly distributed across
a space of values. They thought that this would make it easier for
them to estimate the probability that there was still a bug in the
program. Whether to test with realistic or uniform distributions
is a topic of debate in the literature, with some tools favoring uni-
formity [11, 57] and others realism [73]. In either case, developers
should be able to see the shape of the distribution.

Participants used a combination of strategies to review these
proxy metrics of test quality. Some (P1, P3, P5) read through the
list of examples. Others (P2, P5) described using evaluation tools
already present in their PBT framework of choice; one partic-
ipant used events in Hypothesis and another used labels in
QuickCheck, both to understand coverage of attributes of interest
(e.g., how often does a particular variant of an enumerated type
appear). As we show in §2, while some PBT frameworks provide
views of distributions of user-defined input features, they are diffi-
cult to interpret at a glance and can easily get drowned out among
other terminal messages.

4.2.2 Coverage of the System Under Test. Three participants (P2,
P4, P5) mentioned coverage of the system under test (e.g., line cov-
erage, branch coverage, etc.) was an important proxy metric. Two
participants (P2, P4) reported actually measuring code coverage via
code instrumentation, although P2 did point out the potential fail-
ings of code coverage (calling it “necessary but not sufficient”). This
view is supported by the literature, which suggests that coverage
alone does not guarantee testing success [45].

4.2.3 Test Performance. Finally, two participants (P1, P2) discussed
timing performance as an important proxy for testing effectiveness.
They argued that they have a limited time in which to run tests (e.g.,
3P3’s interview audio was lost due to technical difficulties, so we instead analyzed the
notes we took during their interview.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Lucid Property-Based Testing UIST ’24, October 13–October 16, 2024, Pittsburgh, PA, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

because the tests run every time a new commit is pushed or even
every time a file is saved), so faster tests (more examples per second)
will exercise the system better. They measured performance with
the help of tools built into the PBT framework.

Besides these metrics, participants also expressed being more
confident in their tests when they understood them (P3), when the
test had failed previously (P3), and when a sufficiently large (for
some definition of large) number of examples had been executed (P1,
P4).

4.3 Design Considerations

Our formative research further clarified what is required of us-
able tools for understanding PBT effectiveness. We call these re-
quirements our five design considerations for lucid property-based
testing. They are:

Visual Feedback Our goal to provide better visual feedback from
testing arose from Goldstein et al. [24]’s study and was validated
by participants. Most participants (P1, P2, P3, P5) appreciated the
interface’s visual charts, stating that the visual charts are “a lot eas-
ier to digest than” the built-in statistics printed by Hypothesis (P2).
The previous section (§4.2) clarifies the specific proxy metrics that
developers were interested in visualizing.

Workflow Integration Our initial prototype was built to have
tight editor integration. It could be installed into VSCode in one
step, and updated live as code changed. But, while some partici-
pants validated this choice (P1 and P2), another said they were “not
always a big fan of extensions” because they use a non-VSCode
IDE at work (P4). For that participant, an editor extension actually
discourages use. We therefore refocused on workflow integration
instead of editor integration, and re-architected our design so that
it could plug into other editing workflows.

Customizability Participants found that the default set of visu-
alizations was a good start (P1, P2, P3, P5), but they also suggested
a slew of other visualizations that they thought might improve
their testing evaluation. Many of these visualizations (e.g., code
coverage (P1, P3, P5) and timing (P1)—see §5.2) were integrated into
Lucid. What we could not do was add views that summarized the
interesting attributes of each person’s data: every testing domain
was different. Thus, tools should be customizable so developers can
acquire visual feedback for the information that is important in
their testing domain.

Details on Demand Almost all participants (P1, P2, P3, P4) ex-
pressed a desire to dig deeper into the visualizations they were
presented. This means that lucid PBT interfaces should provide
ways for developers to look deeper into the details of the data that
is being displayed by the visual interfaces.

Standardization Participants used PBT inmultiple programming
languages, including Python (P1, P2, P3, P4), Java (P4), and Haskell
(P5). We posit that to improve the testing experience for all of
these languages and their PBT frameworks without significant
duplicated effort, lucid PBT tools need to standardize the way they
communicate with PBT frameworks. Since PBT frameworks largely
implement the same test loop, despite superficial implementation
differences, this standardization seems technically feasible.

Run Tests
to Generate

Data File

1 2

4 3

Lucid
View

Renders

Explore
Testing

Effectiveness

Change
Test Suite,

Add Events

Figure 2: The Lucid interaction loop.

5 SYSTEM

In this section, we describe our vision of lucid property-based
testing, bringing together the principles we identified in §4.3. We
describe the interaction model that we imagine for Lucid (§5.1),
Lucid’s visual displays that answer PBT users’ questions (§5.2),
and integrations with PBT frameworks that support easy use and
configuration of displays (§5.3).

5.1 Interaction Model

We envision user interactions with Lucid to follow roughly the
steps outlined in Figure 2.

(1) At the start of the loop, the developer runs their tests, and
the test framework (e.g., Hypothesis) collects relevant data
into a OpenLucid log (we discuss the details of this format
in §6).

(2) Once the data has been logged, the user sees Lucid render
an interface with variety of visualizations (see §5.2).

(3) The user interacts with the interface. This may be as simple
as seeing a visualization and immediately noticing that
something is wrong, but they may also explore the views to
seek details about surprising results or generate hypotheses
about what might need to change in their test suite. If the
user is happy with the quality of the test suite at this point,
they may finish their testing session.

(4) Finally, the user can customize their Lucid visualizations or
make changes to their test (e.g., random generation strate-
gies or Hypothesis parameters) before going back around
the loop.

5.2 Visual Feedback

The Lucid interface presents the user with a novel ensemble of
visualizations that are fine-tuned to the PBT setting and enriched
with lightweight affordances to support exploration. We describe

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

UIST ’24, October 13–October 16, 2024, Pittsburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

these visualizations in the context of the kinds of questions they
answer for developers.

5.2.1 How many meaningful tests were run? Perhaps the most im-
portant thing for a developer to know about a test run is how
many meaningful examples were tested. Lucid communicates this
information through the “Sample Breakdown” chart:

The chart communicates a high-level understanding of how many
test inputs were sampled versus how many were run (because they
were found to be “valid”). Ideally, the entire chart would be taken up
by the dark green “Unique / Passed” bar. If the “Invalid” bars are a
large portion of the chart’s height or the “Duplicate” bars are a large
portion of the width, the developer can see that it might be worth
investing time in a generation strategy that is better calibrated for
the property at hand. (If any tests had failed, there would be two
more horizontal bars with the label “Failed.”)

The use of a mosaic chart [28] here allows Lucid to communicate
information about validity and uniqueness in a single chart. We
chose this chart after feedback from study participants suggested
that seeing validity and uniqueness metrics separately made it hard
to tell when and how they overlapped.

5.2.2 How are test inputs distributed? After checking the high-level
breakdown of test inputs, the next questions in the user’s mind will
likely be about the distribution of inputs used to test their property.
Since test inputs are structured objects (e.g., trees, event logs, ...),
it is difficult to observe their distribution directly: what would it
even mean to plot a distribution of trees? Instead, the developer
can visualize features of the distribution by plotting numerical or
categorical data extracted from their test inputs.

For example, the following chart shows a distribution of sizes
projected from a distribution of red–black trees:

Charts like these give developers windows into their distributions
that are much easier to interpret than either the raw examples or
the statistics reported by frameworks like Hypothesis: the chart
above, for example, shows that the distribution skews quite small
(actually, most trees are size 0!), which is a significant problem for
test success (see in §4).

Distributions for categorical features (e.g., whether the value at
the root of a red-black tree is positive or not) are displayed in a
different format:

Categorical feature charts can be especially useful for helping devel-
opers understand whether there are portions of the broader input
space that their tests are currently missing. In this case, the devel-
oper may want to check on why so few roots are positive—in fact,
it is because an empty tree does not have a positive root, and the
distribution is full of empty trees!

Our formative research suggested that just these two kinds of
charts covered the kinds of projections that developers cared about.
In fact, participants seemed concerned that adding more kinds of
feature charts could be distracting; they felt they may waste time
trying to find data to plot for the sake of using the charts, rather
than plotting the few signals that would actually help with their
understanding. In §6.3 we describe how developers can design their
own visualizations outside of Lucid if needed.

5.2.3 How did the tests execute overall? The previous visualizations
show information about test inputs, but developers may also have
higher-level questions about what happened during testing. For
example, early users, including formative research participants,
asked for ways to visualize code coverage for their properties. Lucid
provides the following coverage chart:

This Lucid chart shows the total code coverage achieved over the
course of the test run. Note that this example is from a very small
codebase, so there were really only a few disjoint paths to cover.
Big jumps (around the 1st and 75th inputs) indicate inputs that
meaningfully improved code coverage, whereas plateaus indicate
periods where no new code was reached. As discussed in §4, code
coverage is an incomplete way to measure testing success, but
knowing that the first 70+ test inputs all covered the same lines
suggests that the generation strategy may spend too long exploring
a particular type of input.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Lucid Property-Based Testing UIST ’24, October 13–October 16, 2024, Pittsburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Lucid also provides charts with timing feedback, again answer-
ing a high-level question about execution that was requested by
formative research participants:

The chart above shows that a majority of inputs execute quite
quickly (less than 0.002 seconds) but that some twice or three times
that. For the most expensive tests, the red area, signifying the time
it takes to generate trees, is the largest. While users did request
this chart, we are not clear how useful it is in practice. In our
evaluation study (§7.1), participants did not generally find it helpful.
However, the timing data can be used to corroborate and expand on
information from other charts. For example, notice how the timing
breakdown above actually mirrors the size chart from the previous
section. The combination of these charts suggests that larger trees
take much longer to generate, which suggests as trade-off that a
developer should be aware of.

5.2.4 What test inputs were actually generated? Although much of
the point of Lucid is to avoid programmers needing to sift through
individual test input examples, Lucid does make those examples
available, in line with the lucid PBT consideration of details on
demand:

Each example in the view shows a textual representation of the gen-
erated sample that can be expanded to see metadata like execution
duration and code coverage for the individual example. Examples
are grouped, so that identical examples are only shown once; this
manifests in the “3x” and “2x” annotations shown in the above
screenshot. This grouping aligns better with the lucid PBT idea of
visual feedback, and it cuts down on clutter.

The main way a user reaches the example view is by clicking
on one of the selectable bars of the sample breakdown or feature
distribution charts. The user can dig into the data to answer ques-
tions about why a chart looks a certain way (e.g., if they want to
explore why so few of the red–black tree’s root nodes are positive).
Secondarily, the example view can be used to search for particular
examples to make sure they appear in the sample (e.g., important
corner cases that indicate thorough testing).

5.3 Reactivity and Customizability

The visualizations provided by Lucid are reactive and customizable,
allowing them to integrate neatly into the developer’s workflow as
dictated by the lucid PBT design considerations.

5.3.1 Reactivity. Reactivity has been incorporated into an aston-
ishing variety of programming tools (see the review by Rein et al.
[66]). It is a common feature of many modern developer tools—two
modern examples are Create React App [13], which reloads a web
app on each source change and pytest-watch [65], one of many
testing harnesses that live-reruns tests upon code changes. When
run as a VSCode extension, Lucid automatically refreshes the view
when the user’s tests re-run. When used in conjunction with a test
suite watcher (e.g., pytest-watch, which reruns Hypothesis tests
when the test file is saved) this yields an end-to-end experience with
“level 3 liveness” on Tanimoto’s hierarchy of levels of liveness [79].

5.3.2 Customizability. Specifically, in step (4) of the Lucid loop,
the user can tweak their testing code in ways that change the
visualizations that are shown the next time around the loop.4

Assumptions. As discussed in §2 with the red–black tree example,
developers make assumptions about on what inputs are valid for
their property. Concretely, this happens via the Hypothesis assume
function; for example:
def test_insert_lookup(t, k, v):

assume(is_red_black_tree(t))
assert lookup(insert(k, v, t), k) == v

The assume function filters out any tree that does not satisfy the
provided Boolean check—in this case, that the generated tree is a
valid red–black tree. In the sample breakdown, inputs that break
assumptions are shown as “Invalid.”

Events. Hypothesis also has a feature called “events” to label
property executions interesting. For example, the programmer
might write:
if some_condition:

event("hit_condition")
and then Hypothesis would output “hit_condition: 42%.” To
support richer visual displays of features, we extended the Hypoth-
esis API (with the support of the Hypothesis developers) to allow
events to include “payloads” that correspond to the numerical and
categorical features in the feature charts above. Adding an event to
the above property gives:
def test_insert_lookup(t, k, v):

event("size", payload=size(t))
assume(is_red_black_tree(t))
assert lookup(insert(k, v, t), k) == v

These user events correspond to feature charts: the one shown here
generates the size chart shown in the previous section.

By reusing Hypothesis’s existing idioms for assumptions and
events, Lucid hooks into existing developer workflows and makes
them more powerful. The same pattern also applies to other PBT
frameworks.
4While Lucid works with many PBT frameworks, we describe these customizations in
detail for Python’s Hypothesis specifically. Other frameworks may choose to imple-
ment user customization in other ways that are more idiomatic for their users.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

UIST ’24, October 13–October 16, 2024, Pittsburgh, PA, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

{
line_type: "example",
run_start: number,
property: string,
status: "passed" | "failed" | "discarded",
representation: string,
features: {[key: string]: number | string}
coverage: ...,
timing: ...,
...

}

Figure 3: The OpenLucid line format.

6 IMPLEMENTATION

In this section, we outline the implementation of the Lucid interface.
We begin with the mechanics of the system itself (§6.1), but the
most interesting part is the standardized OpenLucid format that
PBT frameworks use to send data to Lucid (§6.2). In §6.3 we explain
how the Lucid architecture makes it easy to extend the lucid PBT
ecosystem.

6.1 UI Implementation

At the implementation level, Lucid is a web-based interface that is
easy to integrate into existing PBT frameworks.

6.1.1 React Application. Lucid is a React [80] web application that
consumes raw data about the results of one or more PBT runs and
produces interactive visualizations to help users make sense of the
underlying data. The primary way to use Lucid is in the context
of an extension for VSCode that shows the interface alongside
the tests that it pertains to, but it is also available as a standalone
webpage to support workflow integration for non-VSCode users.
(When running as an extension, Lucid is still fundamentally a web
application: VSCode can render web applications in an editor pane.)

The mosaic chart described in §5.2.1 is implemented with custom
HTML and CSS, but all other charts and visualizations are generated
with Vega-Lite [70]. Vega-Lite has good default layout algorithms
for the types of data we care about.

6.1.2 Framework Integration. As discussed in §5.1, we worked with
the Hypothesis developers to make a few small changes to enable
Lucid; other PBT tools require similar changes. The Hypothesis
developers added callback to capture data on each test run, and it
was easy to use this callback to produce data for Lucid. This data
is dumped in the OpenLucid format, which we discuss in §6.2.

In Hypothesis specifically, we also adapted the event function
to have a richer API, described in §5.3.2.

6.2 OpenLucid Data Format

Lucid uses an open standard that PBT frameworks can use to
integrate with lucid PBT tools.

OpenLucid is based on JSON Lines:5 each line in the file is a
JSON object that corresponds to one example. An example is the
smallest unit of data that a test might emit; each represents a single
5https://jsonlines.org

test case. The JSON schema in Figure 3 defines the format of a
single example line. Each example has a run_start timestamp,
used to group examples from the same run of a property and disam-
biguate between multiple runs of data that are stored in the same
file. The property field names the property being tested (extracted
from language internals) and the status field says whether this
example "passed", meaning the property passed, or "failed"
indicating that the example is a counterexample to the property, or
"discarded" meaning that the value did not pass assumptions.
The representation is a human-readable string describing the
example (e.g., as produced by a class’s __repr__ in Python). Finally,
the features reflect the data collected for user-defined events.

The full format includes a few extra fields, including some human-
readable details (e.g., to explain why a particular value was dis-
carded), optional fields naming the particular generator that was
used to produce a value, and a freeform metadata field for any
additional information that might be useful in the example view.

6.3 Expanding the Ecosystem

The clean divide between Lucid and OpenLucid means that PBT
frameworks require only the modest work of implementing Open-
Lucid to get access to the visualizations implemented by Lucid,
and conversely that front ends other than Lucid will work with
any PBT tool that implements OpenLucid.

6.3.1 Supporting New Frameworks. Supporting a new PBT frame-
work is as simple as extending it with some lightweight logging
infrastructure. Framework developers can start small: support-
ing just five fields—type, run_start, property, status, and
representation—is enough to enable a substantial portion of the
features of lucid PBT. After that, adding features will enable user
control of visualizations; coverage and timing may be harder
to implement in some programming languages, but worthwhile to
support the full breadth of Lucid charts.

So far, support for OpenLucid exists in Hypothesis, Haskell
QuickCheck, and OCaml’s base-quickcheck. Our minimal Haskell
QuickCheck implementation is an external library comprising about
100 lines of code and took an afternoon to write.

6.3.2 Adding New Analyses. Basing OpenLucid on JSON Lines and
making each line a mostly-flat record means that processing the
data is very simple. This simplifies the Lucid codebase, but it also
makes it easy to process the data with other tools. For example,
getting started visualizing OpenLucid data in a Jupyter notebook
requires two lines of code
import pandas as pd
pd.read_json(<file>, lines=True)

This means that if a developer starts out using Lucid but finds that
they need a visualization that cannot be generated by adding an
assumption or event, they can simply load the data into a notebook
and start building their own analyses.

In the open-source community, we also expect that developers
may find entirely new use-cases for OpenLucid data that are not
tied to Lucid. For example, OpenLucid data could be used for
reporting testing performance to other developers or managers (this
use-case that was mentioned by participants during our formative
exploration).

8

https://jsonlines.org

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Lucid Property-Based Testing UIST ’24, October 13–October 16, 2024, Pittsburgh, PA, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

7 EVALUATION

In this section, we evaluate our approach to lucid PBT. §7.1 presents
an online self-guided study to assess Lucid’s impact on users’ judg-
ments about the quality of test suites. §7.2 describes the concrete
impact that lucid PBT has already had through identifying bugs in
the Hypothesis testing framework itself.

7.1 Online Study

We chose this study to validate what we saw as the most critical
question about the design: whether the kinds of visual feedback
offered by Lucid led to improved understanding of test suites. We
regarded this question as most critical because we had relatively
less confidence in the effectiveness of visual feedback for helping
find bugs than in other aspects of the Lucid design—indeed, it
is a tall order for any kind of feedback to provide an effective
proxy for the bug-finding power of tests. (By contrast, we felt
our choices around customizability, workflow integration, details
on demand, and standardization were already on solid ground—
these choices were more conservative, and had previously received
positive feedback from developers and PBT tool builders.)

Accordingly, we designed a study to address the following re-
search questions:

RQ1 Does Lucid help developers to predict the bug-finding power
of a given test suite?

RQ2 Which aspects of Lucid best support sensemaking about test
results?

To go beyond qualitative feedback alone, we designed the study
to support statistical inference about whether we had improved
judgments about test distributions. This led us a self-guided, online
usability study that centered on focused usage of Lucid’s visual
displays. The study allowed us to collect sufficientlymany responses
from diverse and sufficiently-qualified programmers to support the
analysis we wanted.

7.1.1 Study Population. We recruited study participants both from
social media users on X (formerly Twitter) and Mastodon and from
graduate and undergraduate students in the computer science de-
partment of a large university, aiming to recruit a diverse set of
programmers ranging from relative beginners with no PBT experi-
ence to experts who may have some exposure.

In all, we recruited 44 participants. 4 responses were discarded
because they did not correctly answer our screening questions, leav-
ing 40 valid responses. All but one of these reported that they were
at least proficient with Python, with 12 self-reporting as advanced
and 9 as expert. Half reported being beginners at PBT, 13 proficient,
6 advanced, and 0 experts. Almost all participants reported being
inexperienced with the Python Hypothesis framework; only 7 re-
porting being proficient. To summarize, the average participant had
experience with Python but not PBT, and if they did know about
PBT it was often not via Hypothesis.

When reporting education level, 4 participants had a high school
diploma, 15 an undergraduate degree, and 20 a graduate degree.
The majority of participants (24) described themselves as students;
7 were engineers; 3 were professors; 6 had other occupations. 28
participants self-identified as male, 5 as female, 2 as another gender,
and 5 did not specify.

We discuss the limitations of this sample in §7.1.5.

7.1.2 Study Procedure. We hypothesized that Lucid would im-
prove a developer’s ability to determine how well a property-based
test exercises the code under test—and therefore, how likely it is
to find bugs. At its core, our study consisted of four “tasks,” each
presenting the participant with a PBT property plus three sets of
sampled inputs for testing that property, drawn from three different
distributions. The goal of each task was to rank the distributions, in
order of their bug-finding power, with the help of either Lucid or a
control interface that mimicked the existing user experience of Hy-
pothesis. Concretely, the control interface consisted of Hypothesis’s
“statistics” output and a list of pretty-printed test input examples;
the statistics output included Hypothesis’s warnings (e.g., when
< 10% of the sample inputs were valid). Both interfaces were styled
the same way and embedded in HTML iframes, so participants
could interact with them as they would if the display were visible
in their editor; Lucid was re-labeled “Charts” and the control was
labeled “Examples,” to reduce demand characteristics.

The distributions that participants had to rank were chosen
carefully; one distribution was the best we could come up with,
one had a one to two clear flaws, and one was intended to be very
low quality. To establish a ground truth, we benchmarked each trio
of input distributions using a state-of-the-art tool called Etna [71].
Etna greatly simplifies the process ofmutation testing as a technique
for determining the bug-finding power of a particular generation
strategy: the programmer specifies a collection of synthetic bugs to
be injected into a particular bug-free program, and Etna does the
work of measuring how quickly (on average) a generator is able
to trigger a particular bug with a particular property. Prior work
has shown that test quality as measured by mutation testing is well
correlated with the power of tests to expose real faults [41]. These
ground truth measurements agreed with the original intent of the
generators, with the best ones finding the most bugs, followed by
the flawed ones, followed by the intentionally bad ones.

The study as experienced by the user is summarized in Figure 4.
We started by providing participants some general instruction on
PBT, since we did not require that participants had worked with it
before. After some screening questions to ensure that participants
had understood the instruction, we presented the main study tasks.
In each, the participants ranked three test distributions based on
how likely they thought they were to find bugs. Each of the four
tasks was focused on a distinct property and data structure:

• Red–Black Tree The property described in §2.1 about the
insert function for a red–black tree implementation.

• Topological Sort A property checking that a topological sort-
ing function works properly on directed acyclic graphs.

• Python Interpreter Aproperty checking that a simple Python
interpreter behaves the same as the real Python interpreter
on straight-line programs.

• Name Server A property checking that a realistic name
server [83] behaves the same as a simpler model implemen-
tation.

These tasks were designed to be representative common PBT sce-
narios: red–black trees are a standard case study in the litera-
ture [69, 71], topological sort has been called an ideal pedagogical
example for PBT [59], programming language implementations are

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

UIST ’24, October 13–October 16, 2024, Pittsburgh, PA, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Charts Charts Charts

Dist. 2 Dist. 1 Dist. 3

Examples Examples

Dist. 2 Dist. 1 Dist. 3

Examples

x4

Background & Instructions

Sense Check Questions

Evaluation Tasks

Closing Questions

Figure 4: The procedure of the self-guided, online usability

study.

a common PBT application domain [63], and name servers capture
some of the challenges of PBT on systems with significant internal
state [38].

To counterbalance potential biases due to the order that dif-
ferent tasks or conditions were encountered, we randomized the
participants’ experience in three ways: (1) two tasks were randomly
assigned Lucid, while the other two received the control interface,
(2) tasks were shown to users in a random order, and (3) the three
distributions for each task were shown in a random order.

Four participants took over an hour to complete the study; we
suspect this is because they started, got up for a while, and then
returned to the study. Of the rest, participants took 32 minutes on
average (𝜎 = 12) to complete the study; only one took less than 15
minutes. Participants took about 3 minutes on average (𝜎 = 2.5) to
complete each task.

7.1.3 Results. To answer RQ1, whether or not Lucid helps de-
velopers to predict test suite bug-finding power, we analyzed how
well participants’ rankings of the three distributions for each task
agreed with the true rankings as determined by mutation testing.
Given a participant’s ranking, for example 𝐷2 > 𝐷1 > 𝐷3, we
compared it to the true ranking (say, 𝐷1 > 𝐷2 > 𝐷3) by counting
the number of correct pairwise comparisons—here, for example,
the participant correctly deduced that 𝐷1 > 𝐷3 and 𝐷2 > 𝐷3, but
they incorrectly concluded that 𝐷2 > 𝐷1, so this counted as one
incorrect comparison.6

Figure 5 shows the breakdown of incorrect comparisons made
with and without Lucid, separated out by task. To assess whether
Lucid impacts correctness, we performed a one-tailedMann-Whitney

6This metric is isomorphic to Spearman’s 𝜌 [74] in this simple case. Making 0 incorrect
comparisons equates to 𝜌 = 1, making 1 is 𝜌 = 0.5, 2 is 𝜌 = −0.5, and 3 is 𝜌 = −1. We
found counting incorrect comparisons to be the most intuitive way of conceptualizing
the data.

Table 1: Values for Mann-Whitney U test measuring Lucid’s

impact on incorrect comparisons. All sample sizes were be-

tween 18 and 22, totaling 40, depending on the random vari-

ation in the way conditions were assigned; 𝑟 is common lan-

guage effect size,𝑚 is median number of incorrect compar-

isons.

𝑈 𝑝 𝑟 𝑚Lucid 𝑚Examples
Red–Black Trees 65 < 0.01 0.84 0 1
Topological Sort 127 0.01 0.68 0 1
Python Interp. 182 0.26 - 0 0
Name Server 91 < 0.01 0.77 0 1

U test [54] for each task, with the null hypothesis that Lucid does
not lead to fewer incorrect comparisons. The results appear in
Table 1. For three of the four tasks (all but Python Interpreter), par-
ticipants made significantly fewer incorrect comparisons when
using Lucid, with strong common-language effect sizes, meaning
that participants were better at assessing testing effectiveness with
Lucid than without. Furthermore, a majority of participants got a
completely correct ranking for all 4 of the tasks with Lucid, while
this was only the case for 1 of the tasks without it. (For Python Inter-
preter, participants overwhelmingly found the correct answer with
both conditions—in other words, the task was simply too easy—but
precisely why it was too easy is interesting; see §7.1.4.) Despite this
difference in accuracy, participants took around the same time with
both treatments; the mean time to complete a task with Lucid was
183 seconds (𝜎 = 125), verses 203 seconds (𝜎 = 165) for the control.
These results support answering RQ1 with “yes.”

To answer RQ2we used a post-study survey, asking participants
for feedback on which of Lucid’s visualizations they found use-
ful. The vast majority of participants (37/40) stated that Lucid’s
“bar charts” were helpful. (Unfortunately, we phrased this question
poorly: we intended for it to refer only to feature charts, but par-
ticipants may have interpreted it to include the mosaic chart as
well.) Additionally, 20/40 participants found the code coverage visu-
alization useful, 17/40 found the warnings useful, and 14/40 found
the listed examples useful. Only 4/40 found the timing breakdown
useful; we may need to rethink that chart’s design, although it may
also simply be that the tasks chosen for the study did not require
timing data to complete. These results suggest that the customizable
parts of the interface—the feature and/or mosaic charts—were the
most useful, followed by some of the more general affordances.

To get a sense of participants’ overall impression of Lucid, we
also asked “Which view [Lucid or the control] made the difference
between test suites clearer?” with five options on a Likert scale. All
but one participant said Lucid made the differences clearer, with
35/40 saying Lucid was “much clearer.”

7.1.4 Discussion. Overall, the online study was an encouraging
evaluation of Lucid’s impact on developer understanding. In addi-
tion to the core observations above, we also made a couple of other
smaller observations.

6This corresponds to the probability that randomly sampled Lucid participant will
make fewer errors than a control participant, computed as 𝑟 =

𝑈1
𝑛1∗𝑛2

.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Lucid Property-Based Testing UIST ’24, October 13–October 16, 2024, Pittsburgh, PA, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

0 1 2 3

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

C
ou

n
t

Red-Black Trees

0 1 2 3

Topological Sort

0 1 2 3

Python Interpreter

0 1 2 3

Name Server

Condition
Charts
Examples

Incorrect Comparisons

Figure 5: Distribution of errors made for each task, where each incorrect relative ranking between two test suites counts as one

error. When using Lucid, significantly fewer errors were made for Red Black Trees, Topological Sort, and Name Server. =

Lucid, = Control.

Confidence. Alongside each ranking, we asked developers how
confident they were in it, on a scale from 1–5 (“Not at all” = 1, “A
little confident” = 2, “Moderately confident” = 3, “Very confident”
= 4, “Certain” = 5). We found that reported confidence was signifi-
cantly higher with Lucid than without on two tasks (Red–Black
Tree and Topological Sort), as computed via a similar one-sided
Mann-Whitney U test to the one before (𝑝 < 0.01 and 𝑝 = 0.03
respectively), with no significant difference for the other tasks. How-
ever, these results have no clear interpretation. When we computed
Spearman’s 𝜌 [74] between the confidence scores and incorrect
comparison counts, we found no significant relationship; in other
words, participants’ confidence was not, broadly, a good predictor
of their success.

Non-significant Result for “Python Interpreter” Task. As men-
tioned above, the Python Interpreter task seems to have been too
easy; participants made very few mistakes across the board. We
propose that this is, at least in part, because the existing statistics
output available in Hypothesis was already good enough. For the
worst of the three distributions, Hypothesis clearly displayed a
warning that “< 10% of examples satisfied assumptions,” an obvi-
ous sign of something wrong. Conversely, for the best distribution
of the three, Hypothesis showed a wide variety of values for the
variable_uses event, which was only ever 0 for the other two
distributions. Critically, the list displayed was visually longer, so it
was easy to see the variety at a glance. (We show an example of
what the user saw in Appendix B.) This result shows that Hypothe-
sis’s existing tools can be quite helpful in some cases: in particular,
they seem to be useful when the distributions have big discrepan-
cies that make a visual difference (e.g., adding significant volume)
in the statistics output.

7.1.5 Limitations. We are aware of two significant limitations of
the online study: sampling bias and ecological validity.

The sample we obtained was appropriate from the perspective
of prior experience and general level of education, but it under-
represents important groups with regards to both gender and occu-
pation. For gender, prior work has shown that user interfaces often
demonstrate a bias for cognitive strategies that correlate with gen-
der [9, 77], so a more gender-diverse sample would have been more
informative for the study. For occupation, we reached a significant

portion of students and proportionally fewer working developers.
Many of those students are in computer science programs and there-
fore will likely be developers someday, but software developers are
ultimately the population we would like to impact so we would like
to have more direct confirmation that Lucid works for them.

The other significant limitation is ecological validity. Because
this study was not run in situ, aspects of the experimental design
may have impacted the results. For example, study participants did
not write the events and assumptions for the property themselves; if
they would have been unable to do so in practice, the outcomes may
have been very different. Additionally, participants saw snippets
of code, but they were not intimately familiar with, nor could they
inspect, the code under test. In a real testing scenario, a developer’s
understanding of their testing success would depend in part on their
understanding of the code under test itself. We did control for other
ecological issues: for example, we used live instances of Lucid in an
iframe to maintain the interactivity of the visual displays, and we
developed tasks that span a range of testing scenarios. We discuss
plans to evaluate Lucid in situ in §8.1

7.2 Impact on the Testing Ecosystem

Since Lucid is an open-source project that is beginning to engage
with the PBT community, we can also evaluate its design by look-
ing at its impact on practice. The biggest sign of this so far is that
Lucid has led to 5 concrete bug-fixes and enhancements in the Hy-
pothesis codebase itself. As of this writing, Hypothesis developers
have found and fixed three bugs—one causing test input sizes to be
artificially limited, another that badly skewed test input distribu-
tions, and a third that impacted performance of stateful generation
strategies—and two long-standing issues pertaining to user expe-
rience: a nine-year-old issue about surfacing important feedback
about the assume function and a seven-year-old issue asking to
clarify terminal error messages. All five of these issues are threats
to developers’ evaluation of their tests; the problems were found
and fixed after study participants and other Lucid users noticed
deficiencies in their test suites that turned out to be library issues.

The ongoing development of Lucid has the support of the Hy-
pothesis developers, and it has also begun to take root in other
parts of the open-source testing ecosystem. One of the authors was

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

UIST ’24, October 13–October 16, 2024, Pittsburgh, PA, USA Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

contacted by the developers of PyCharm, an IDE focused on Python
specifically, to ask about the OpenLucid format. They realized that
the coverage information therein would provide them a shortcut
for code coverage highlighting features that integrate cleanly with
Hypothesis and other testing frameworks.

8 CONCLUSIONS AND FUTUREWORK

Lucid property-based testing rethinks the PBT process as more inter-
active and empowering to developers. Rather than hide the results
of running properties, which may lead to confusion and false con-
fidence, the OpenLucid protocol and interfaces like Lucid give
developers rich insight into their testing process. Lucid PBT tools
provide visual feedback, integrate with developer workflows, pro-
vide hooks for customization, show details on demand, and work
with other tools in the ecosystem to provide a standardized way
to evaluate testing success. Our evaluation of the lucid PBT para-
digm shows that it helps developers to tell the difference between
good and bad test suites; its demonstrated real-world impact on the
Hypothesis framework backs up those conclusions.

Moving forward, we see a number of directions where further
research would be valuable.

8.1 Evaluation in Long-Term Deployments

Our formative research and online evaluation study have provided
evidence that lucid PBT is usable, but there is more to explore
about the design of lucid PBT and Lucid. In particular, as Lucid
is deployed over longer periods of time in real-world software
development settings, we are excited to assess its continued impact.

8.2 Improving Data Presentation for Lucid PBT

As the Lucid project evolves, we plan to add new visualizations and
workflows to support developer exploration and understanding.

Code Coverage Visualization. The visualization we provide for
displaying code coverage over time was not considered particu-
larly important by study participants: it may be useful to explore
alternative designs.

One path forward is in-situ line-coverage highlighting, like that
provided by Tarantula [40]. Indeed, it would be easy to implement
Tarantula’s algorithm, which highlights lines based on the pro-
portion of passed versus failed tests that hit that line, in Lucid
(supported by OpenLucid). In cases where no failing examples
are found, each line could simply be highlighted with a brightness
proportional to the number of times it was covered.

Line highlighting is useful for asking questions about particular
parts of the codebase, but developers may also have questions about
how code is exercised for different parts of the input space. To
address these questions, we plan to experiment with visualizations
that cluster test inputs based on the coverage that they have in
common. This would let developers answer questions like “which
inputs could be considered redundant in terms of coverage?” and
“which inputs cover parts of the space that are rarely reached?”

Mutation Testing. In cases where developers implement mutation
testing for their system under test, we propose incorporating that
information into Lucid for better interaction support. Recall that
in §7.1, we used mutation testing, via the Etna tool, as a ground
truth for test suite quality; mutation testing checks that a test suite

can find synthetic bugs or “mutants” that are added to the test suite.
Etna is powerful, but its output is not interactive: there is no way to
explore the charts it generates, nor can you connect the mutation
testing results with the other visualizations that Lucid provides.
Thus, we hope to add optional visualizations to Lucid, inspired by
Etna, that tell developers how well their tests catch mutants.

Longitudinal Comparisons of Testing Effectiveness. Informal con-
versations with potential industrial users of Lucid suggest that
developers want ways to compare visualizations of the same sys-
tem at different points in time—either short term, to inspect the
results of changes—or longer term, to understand how testing ef-
fectiveness has evolved over time. These comparisons would make
it clear if changes over time have improved test quality, or if there
have been significant regressions.

Interestingly, the design of the online evaluation study acciden-
tally foreshadowed a design that may be effective: allowing two
instances of Lucid, connected to different instances of the system
under test, to run side-by-side so the user can compare them. Since
developers were able to successfully compare two distributions
side-by-side with Lucid in the study, we expect they will also be
able to if presented the same thing in practice. This is simple to
implement and provides good value for little conceptual overhead
on developers.

8.3 Improving Control in Lucid PBT

Lucid is currently designed to support existing developer workflows
and provide insights into test suite shortcomings. But participants
in the formative research (P1, P4) did speculate about some ways
that Lucid could help developers to adjust their random generation
strategies after they notice something is wrong.

Direct Manipulation of Distributions. When a developer notices,
with the help of Lucid, that their test input distribution is sub-par,
they may immediately know what distribution they would prefer to
see. In this case, we would like developers to be able to change the
distribution via direct manipulation—i.e., clicking and dragging the
bars of the distribution to the places they should be, automatically
updating the input generation strategy accordingly. One poten-
tial way to achieve this would be to borrow techniques from the
probabilistic programming community, and in particular languages
like Dice [36]. Probabilistic programming languages and random
data generators are actually quite closely related, and the potential
overlap is under-explored. Alternatively, reflective generators [25]
can tune a PBT generator to mimic a provided set of examples. If
a developer thinks a particular bar of a chart should be larger, a
reflective generator may be able to tune a generator to expand on
the examples represented in that bar.

Manipulating Strategy Parameters in Lucid. Occasionally direct
manipulation as discussed abovewill be computationally impossible
to implement; in those cases Lucid could still provide tools to help
developers easily manipulate the parameters of different generation
strategies. For example, if a generation strategy takes a max_value
as an input, Lucid could render a slider that lets the developer
change that value and monitor the way the visualizations change,
resembling interactions already appearing in HCI programming
tools (e.g., [29, 44]). Of course, running hundreds of tests on every
slider update may be slow; to speed it up, we propose incorporating

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Lucid Property-Based Testing UIST ’24, October 13–October 16, 2024, Pittsburgh, PA, USA

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

ideas from the literature of self-adjusting computation [1], which
has tools for efficiently re-running computations in response to
small changes of their inputs.

8.4 Lucid Automated Testing

The ideas behind lucid PBT may also have applications beyond
the specific domain of PBT. Other automated testing techniques—
for example fuzz testing (“fuzzing”)—could also benefit from en-
hanced understandability. Fuzzing is closely related to PBT7, and
the fuzzing community has some interesting visual approaches to
communicating testing success. One of the most popular fuzzing
tools, AFL++ [18], includes a sophisticated textual user-interface
giving feedback on code coverage and other fuzzing statistics over
the course of (sometimes lengthy) “fuzzing campaigns.” But cur-
rent fuzzers suffer from the same usability limitations as current
PBT frameworks, hiding information that could help developers
evaluate testing effectiveness. We would like to explore adapting
Lucid and expanding OpenLucid to work with fuzzers and other
automated testing tools, bringing the benefits of the lucid design
methodology to an even broader audience.

REFERENCES

[1] Umut A. Acar. 2009. Self-adjusting computation: (an overview). In Proceedings of

the 2009 ACM SIGPLAN workshop on Partial evaluation and programmanipulation

(PEPM ’09). Association for Computing Machinery, New York, NY, USA, 1–6.
https://doi.org/10.1145/1480945.1480946

[2] Alexandr Andoni, Dumitru Daniliuc, Sarfraz Khurshid, and Darko Marinov. 2002.
Evaluating the “Small Scope Hypothesis”. (2002).

[3] Thomas Arts, John Hughes, Joakim Johansson, and Ulf Wiger. 2006. Testing tele-
coms software with quviq QuickCheck. In Proceedings of the 2006 ACM SIGPLAN

workshop on Erlang (ERLANG ’06). Association for Computing Machinery, New
York, NY, USA, 2–10. https://doi.org/10.1145/1159789.1159792

[4] Thomas Arts, John Hughes, Ulf Norell, and Hans Svensson. 2015. Testing AU-
TOSAR software with QuickCheck. In 2015 IEEE Eighth International Confer-

ence on Software Testing, Verification and Validation Workshops (ICSTW). 1–4.
https://doi.org/10.1109/ICSTW.2015.7107466

[5] Ann Blandford, Dominic Furniss, and Stephann Makri. 2016. Analysing Data.
In Qualitative HCI Research: Going Behind the Scenes, Ann Blandford, Dominic
Furniss, and Stephann Makri (Eds.). Springer International Publishing, Cham,
51–60. https://doi.org/10.1007/978-3-031-02217-3_5

[6] James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully, Bernhard
Kragl, Seth Markle, Kyle Sauri, Drew Schleit, Grant Slatton, Serdar Tasiran, Jacob
Van Geffen, and Andrew Warfield. 2021. Using Lightweight Formal Methods
to Validate a Key-Value Storage Node in Amazon S3. In Proceedings of the ACM

SIGOPS 28th Symposium on Operating Systems Principles (SOSP ’21). Association
for Computing Machinery, New York, NY, USA, 836–850. https://doi.org/10.
1145/3477132.3483540

[7] Darren Brown, Margaret Burnett, Gregg Rothermel, Hamido Fujita, and Fu-
mio Negoro. 2003. Generalizing WYSIWYT visual testing to screen transition
languages. In IEEE Symposium on Human Centric Computing Languages and

Environments, 2003. Proceedings. 2003. IEEE, 203–210.
[8] Brian Burg, Richard Bailey, Amy J. Ko, and Michael D. Ernst. 2013. Interactive

Record/Replay for Web Application Debugging. In Proceedings of the Symposium

on User Interface Software and Technology. ACM, 473–483.
[9] Margaret Burnett, Simone Stumpf, Jamie Macbeth, Stephann Makri, Laura Beck-

with, Irwin Kwan, Anicia Peters, and William Jernigan. 2016. GenderMag: A
Method for Evaluating Software’s Gender Inclusiveness. Interacting with Com-

puters 28, 6 (2016), 760–787.
[10] Tsung-Hsiang Chang, Tom Yeh, and Robert C Miller. 2010. GUI testing using

computer vision. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems. 1535–1544.
[11] Koen Claessen, Jonas Duregård, and Michal H. Palka. 2015. Generating con-

strained random data with uniform distribution. J. Funct. Program. 25 (2015).
https://doi.org/10.1017/S0956796815000143

7Generally speaking, fuzzers operate on whole programs and run for extended periods
of time, whereas PBT tools operate on smaller program units and run for shorter times.
Instead of testing logical properties, fuzzers generally try to make the program crash.

[12] Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for
random testing of Haskell programs. In Proceedings of the Fifth ACM SIGPLAN

International Conference on Functional Programming (ICFP ’00), Montreal, Canada,

September 18-21, 2000, Martin Odersky and Philip Wadler (Eds.). ACM, Montreal,
Canada, 268–279. https://doi.org/10.1145/351240.351266

[13] Create React App [n. d.]. Retrieved March 23, 2024 from https://github.com/
facebook/create-react-app

[14] Matthew C. Davis, Sangheon Choi, Sam Estep, Brad A. Myers, and Sunshine.
2023. NaNoFuzz: A Usable Tool for Automatic Test Generation.

[15] Daniel Drew, Julie L Newcomb,WilliamMcGrath, Filip Maksimovic, DavidMellis,
and Björn Hartmann. 2016. The toastboard: Ubiquitous instrumentation and
automated checking of breadboarded circuits. In Proceedings of the 29th Annual

Symposium on User Interface Software and Technology. 677–686.
[16] Ian Drosos, Titus Barik, Philip J. Guo, Robert DeLine, and Sumit Gulwani. 2020.

Wrex: A Unifed Programming-by-Example Interaction for Synthesizing Readable
Code for Data Scientists. In Proceedings of the CHI Conference on Human Factors

in Computing Systems. ACM. Paper 315.
[17] Nicolas Dubien. 2024. fast-check. https://fast-check.dev/
[18] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. {AFL++}

: Combining Incremental Steps of Fuzzing Research. https://www.usenix.org/
conference/woot20/presentation/fioraldi

[19] Andrew Gallant. 2024. BurntSushi/quickcheck. https://github.com/BurntSushi/
quickcheck original-date: 2014-03-09T07:29:09Z.

[20] Elena L. Glassman, Jeremy Scott, Rishabh Singh, Philip J. Guo, and Robert C.
Miller. 2015. OverCode: Visualizing Variation in Student Solutions to Program-
ming Problems at Scale. ACM Transactions on Computer-Human Interaction 22, 2
(March 2015), 7:1–7:35. https://doi.org/10.1145/2699751

[21] Elena L. Glassman, Jeremy Scott, Rishabh Singh, Philip J. Guo, and Robert C.
Miller. 2015. OverCode: Visualizing Variation in Student Solutions to Program-
ming Problems at Scale. 22, 2 (2015), 7:1–7:35.

[22] Elena L. Glassman, Tianyi Zhang, Björn Hartmann, and Miryung Kim. 2018.
VisualizingAPI Usage Examples at Scale. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems (CHI ’18). Association for Computing
Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3173574.3174154

[23] Elena L. Glassman, Tianyi Zhang, Björn Hartmann, and Miryung Kim. 2018.
Visualizing API Usage Examples at Scale. In Proceedings of the CHI Conference on

Human Factors in Computing Systems. ACM. Paper 580.
[24] Harrison Goldstein, Joseph W Cutler, Daniel Dickstein, Benjamin C Pierce, and

Andrew Head. 2024. Property-Based Testing in Practice. In International Confer-

ence on Software Engineering (ICSE).
[25] Harrison Goldstein, Samantha Frohlich, Meng Wang, and Benjamin C. Pierce.

2023. Reflecting on Random Generation. In Proceedings of ACM Programming

Languages. Seattle, WA, USA. https://doi.org/10.1145/3607842
[26] Harrison Goldstein, John Hughes, Leonidas Lampropoulos, and Benjamin C.

Pierce. 2021. Do Judge a Test by its Cover. In Programming Languages and Systems

(Lecture Notes in Computer Science), Nobuko Yoshida (Ed.). Springer International
Publishing, Cham, 264–291. https://doi.org/10.1007/978-3-030-72019-3_10

[27] Harrison Goldstein and Benjamin C. Pierce. 2022. Parsing Randomness. Pro-
ceedings of the ACM on Programming Languages 6, OOPSLA2 (Oct. 2022), 128:89–
128:113. https://doi.org/10.1145/3563291

[28] J. A. Hartigan and B. Kleiner. 1981. Mosaics for Contingency Tables. In Computer

Science and Statistics: Proceedings of the 13th Symposium on the Interface, William F.
Eddy (Ed.). Springer US, New York, NY, 268–273. https://doi.org/10.1007/978-1-
4613-9464-8_37

[29] Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R. Klemmer.
2008. Design as Exploration: Creating Interface Alternatives through Parallel
Authoring and Runtime Tuning. In Proceedings of the Symposium on User Interface

Software and Technology. ACM, 91–100.
[30] Andrew Head, Elena Glassman, Gustavo Soares, Ryo Suzuki, Lucas Figueredo,

Loris D’Antoni, and Björn Hartmann. 2017. Writing Reusable Code Feedback at
Scale with Mixed-Initiative Program Synthesis. In Proceedings of the Conference

on Learning at Scale. ACM, 89–98.
[31] Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch: Output-

Directed Programming for SVG. In Proceedings of the Symposium on User Interface

Software and Technology. ACM, 281–292.
[32] Jane Hoffswell, Arvind Satyanarayan, and Jeffrey Heer. 2018. Augmenting Code

with In Situ Visualizations to Aid Program Understanding. In Proceedings of the

CHI Conference on Human Factors in Computing Systems. ACM. Paper 532.
[33] Fred Hohman, Andrew Head, Rich Caruana, Robert DeLine, and Steven M.

Drucker. 2019. Gamut: A Design Probe to Understand How Data Scientists
Understand Machine Learning Models. In Proceedings of the CHI Conference on

Human Factors in Computing Systems. ACM. Paper 579.
[34] Fred Hohman, Kanit Wongsuphasawat, Mary Beth Kery, and Kayur Patel. 2020.

Understanding and Visualizing Data Iteration in Machine Learning. In Proceed-

ings of the CHI Conference on Human Factors in Computing Systems. ACM. Paper
50.

[35] Paul Holser. 2024. pholser/junit-quickcheck. https://github.com/pholser/junit-
quickcheck original-date: 2010-10-18T22:33:36Z.

13

https://doi.org/10.1145/1480945.1480946
https://doi.org/10.1145/1159789.1159792
https://doi.org/10.1109/ICSTW.2015.7107466
https://doi.org/10.1007/978-3-031-02217-3_5
https://doi.org/10.1145/3477132.3483540
https://doi.org/10.1145/3477132.3483540
https://doi.org/10.1017/S0956796815000143
https://doi.org/10.1145/351240.351266
https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app
https://fast-check.dev/
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://github.com/BurntSushi/quickcheck
https://github.com/BurntSushi/quickcheck
https://doi.org/10.1145/2699751
https://doi.org/10.1145/3173574.3174154
https://doi.org/10.1145/3607842
https://doi.org/10.1007/978-3-030-72019-3_10
https://doi.org/10.1145/3563291
https://doi.org/10.1007/978-1-4613-9464-8_37
https://doi.org/10.1007/978-1-4613-9464-8_37
https://github.com/pholser/junit-quickcheck
https://github.com/pholser/junit-quickcheck

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

UIST ’24, October 13–October 16, 2024, Pittsburgh, PA, USA Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

[36] Steven Holtzen, Guy Van den Broeck, and Todd Millstein. 2020. Scaling Exact
Inference for Discrete Probabilistic Programs. Proceedings of the ACM on Program-

ming Languages 4, OOPSLA (Nov. 2020), 1–31. https://doi.org/10.1145/3428208
arXiv:2005.09089 [cs].

[37] John Hughes. 2007. QuickCheck Testing for Fun and Profit. In Practical Aspects of

Declarative Languages (Lecture Notes in Computer Science), Michael Hanus (Ed.).
Springer, Berlin, Heidelberg, 1–32. https://doi.org/10.1007/978-3-540-69611-7_1

[38] John Hughes. 2016. Experiences with QuickCheck: Testing the Hard Stuff and
Staying Sane. In A List of Successes That Can Change the World: Essays Dedicated

to PhilipWadler on the Occasion of His 60th Birthday, Sam Lindley, Conor McBride,
Phil Trinder, and Don Sannella (Eds.). Springer International Publishing, Cham,
169–186. https://doi.org/10.1007/978-3-319-30936-1_9

[39] John Hughes, Benjamin C. Pierce, Thomas Arts, and Ulf Norell. 2016. Mysteries
of DropBox: Property-Based Testing of a Distributed Synchronization Service. In
2016 IEEE International Conference on Software Testing, Verification and Validation

(ICST). 135–145. https://doi.org/10.1109/ICST.2016.37
[40] James A. Jones and Mary Jean Harrold. 2005. Empirical evaluation of the

tarantula automatic fault-localization technique. In Proceedings of the 20th

IEEE/ACM International Conference on Automated Software Engineering (ASE

’05). Association for Computing Machinery, New York, NY, USA, 273–282.
https://doi.org/10.1145/1101908.1101949

[41] René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes,
and Gordon Fraser. 2014. Are mutants a valid substitute for real faults in software
testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium on

Foundations of Software Engineering. 654–665.
[42] Hyeonsu Kang and Philip J. Guo. 2017. Omnicode: A Novice-Oriented Live

Programming Environment with Always-On Run-Time Value Visualizations. In
Proceedings of the Symposium on User Interface Software and Technology. ACM,
737–745.

[43] Marcel R Karam and Trevor J Smedley. 2001. A testing methodology for a
dataflow based visual programming language. In Proceedings IEEE Symposia on

Human-Centric Computing Languages and Environments (Cat. No. 01TH8587).
IEEE, 280–287.

[44] Mary Beth Kery, Donghao Ren, Fred Hohman, Dominik Moritz, Kanit Wong-
suphasawat, and Kayur Patel. 2020. mage: Fluid moves between code and graph-
ical work in computational notebooks. In Proceedings of the Symposium on User

Interface Software and Technology. ACM, 140–151.
[45] Pavneet Singh Kochhar, David Lo, Julia Lawall, and Nachiappan Nagappan.

2017. Code Coverage and Postrelease Defects: A Large-Scale Study on Open
Source Projects. IEEE Transactions on Reliability 66, 4 (Dec. 2017), 1213–1228.
https://doi.org/10.1109/TR.2017.2727062 Conference Name: IEEE Transactions
on Reliability.

[46] D. Richard Kuhn, James M. Higdon, James Lawrence, Raghu Kacker, and Yu
Lei. 2012. Combinatorial Methods for Event Sequence Testing. In Fifth IEEE

International Conference on Software Testing, Verification and Validation, ICST 2012,

Montreal, QC, Canada, April 17-21, 2012, Giuliano Antoniol, Antonia Bertolino,
and Yvan Labiche (Eds.). IEEE Computer Society, 601–609. https://doi.org/10.
1109/ICST.2012.147

[47] Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce. 2017.
Generating good generators for inductive relations. Proceedings of the ACM on

Programming Languages 2, POPL (2017), 1–30. https://dl.acm.org/doi/10.1145/
3158133 Publisher: ACM New York, NY, USA.

[48] J Lawrance, Steven Clarke, Margaret Burnett, and Gregg Rothermel. 2005. How
well do professional developers test with code coverage visualizations? an em-
pirical study. In 2005 IEEE Symposium on Visual Languages and Human-Centric

Computing (VL/HCC’05). IEEE, 53–60.
[49] Sorin Lerner. 2020. Projection boxes: On-the-fly reconfigurable visualization for

live programming. In Proceedings of the 2020 CHI Conference on Human Factors

in Computing Systems. 1–7.
[50] David R MacIver, Zac Hatfield-Dodds, and others. 2019. Hypothesis: A new

approach to property-based testing. Journal of Open Source Software 4, 43 (2019),
1891. https://joss.theoj.org/papers/10.21105/joss.01891.pdf

[51] Mikaël Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron, Oleksandr
Polozov, Rishabh Singh, Benjamin Zorn, and Sumit Gulwani. 2015. User Interac-
tion Models for Disambiguation in Programming by Example. In Proceedings of

the Symposium on User Interface Software and Technology. ACM, 291–301.
[52] Will McGrath, Daniel Drew, Jeremy Warner, Majeed Kazemitabaar, Mitchell

Karchemsky, David Mellis, and Björn Hartmann. 2017. Bifröst: Visualizing
and checking behavior of embedded systems across hardware and software. In
Proceedings of the 30th Annual ACM Symposium on User Interface Software and

Technology. 299–310.
[53] William McGrath, Jeremy Warner, Mitchell Karchemsky, Andrew Head, Daniel

Drew, and Bjoern Hartmann. 2018. Wifröst: Bridging the information gap for
debugging of networked embedded systems. In Proceedings of the 31st Annual

ACM Symposium on User Interface Software and Technology. 447–455.
[54] Patrick E McKnight and Julius Najab. 2010. Mann-Whitney U Test. The Corsini

encyclopedia of psychology (2010), 1–1. Publisher: Wiley Online Library.
[55] Microsoft. 2024. Visual Studio Code. https://code.visualstudio.com/

[56] Robert C Miller and Brad A Myers. 2001. Outlier finding: Focusing user attention
on possible errors. In Proceedings of the 14th annual ACM symposium on User

interface software and technology. 81–90.
[57] Agustín Mista, Alejandro Russo, and John Hughes. 2018. Branching processes for

QuickCheck generators. In Proceedings of the 11th ACM SIGPLAN International

Symposium on Haskell, Haskell@ICFP 2018, St. Louis, MO, USA, September 27-17,

2018, Nicolas Wu (Ed.). ACM, 1–13. https://doi.org/10.1145/3242744.3242747
[58] Aaditya Naik, Jonathan Mendelson, Nathaniel Sands, Yuepeng Wang, Mayur

Naik, and Mukund Raghothaman. 2021. Sporq: An interactive environment for
exploring code using query-by-example. In The 34th Annual ACM Symposium on

User Interface Software and Technology. 84–99.
[59] Tim Nelson, Elijah Rivera, Sam Soucie, Thomas Del Vecchio, John Wrenn, and

Shriram Krishnamurthi. 2021. Automated, Targeted Testing of Property-Based
Testing Predicates. The Art, Science, and Engineering of Programming 6, 2
(Nov. 2021), 10. https://doi.org/10.22152/programming-journal.org/2022/6/10
arXiv:2111.10414 [cs].

[60] Wode Ni, Joshua Sunshine, Vu Le, Sumit Gulwani, and Titus Barik. 2021. recode:
A lightweight find-and-replace interaction in the ide for transforming code by
example. In The 34th Annual ACM Symposium on User Interface Software and

Technology. 258–269.
[61] Rickard Nilsson. 2024. ScalaCheck. https://scalacheck.org/
[62] Stephen Oney and Brad Myers. 2009. FireCrystal: Understanding Interactive

Behaviors in Dynamic Web Pages. In Proceedings of the Symposium on Visual

Languages and Human-Centric Computing. IEEE, 105–108.
[63] Micha\l H. Pa\lka, Koen Claessen, Alejandro Russo, and John Hughes. 2011.

Testing an Optimising Compiler by Generating Random Lambda Terms. In
Proceedings of the 6th International Workshop on Automation of Software Test (AST

’11). ACM, New York, NY, USA, 91–97. https://doi.org/10.1145/1982595.1982615
event-place: Waikiki, Honolulu, HI, USA.

[64] Kevin Pu, Rainey Fu, Rui Dong, XinyuWang, Yan Chen, and Tovi Grossman. 2022.
SemanticOn: Specifying content-based semantic conditions for web automation
programs. In Proceedings of the 35th Annual ACM Symposium on User Interface

Software and Technology. 1–16.
[65] pytest-watch [n. d.]. RetrievedMarch 23, 2024 from https://github.com/joeyespo/

pytest-watch
[66] Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias Pape.

2018. Exploratory and Live, Programming and Coding. The Art, Science, and
Engineering of Programming 3, 1 (2018).

[67] Gregg Rothermel, Lixin Li, Christopher DuPuis, and Margaret Burnett. 1998.
What you see is what you test: A methodology for testing form-based visual pro-
grams. In Proceedings of the 20th international conference on Software engineering.
IEEE, 198–207.

[68] Adam Rule, Ian Drosos, Aurélien Tabard, and James D. Hollan. 2018. Aiding
Collaborative Reuse of Computational Notebooks with Annotated Cell Folding.
In Proceedings of the Conference on Computer-Supported Cooperative Work and

Social Computing. ACM. Article 150.
[69] Colin Runciman, Matthew Naylor, and Fredrik Lindblad. 2008. Smallcheck and

lazy smallcheck: automatic exhaustive testing for small values. ACM SIGPLAN

Notices 44, 2 (Sept. 2008), 37–48. https://doi.org/10.1145/1543134.1411292
[70] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey

Heer. 2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Transactions

on Visualization and Computer Graphics 23, 1 (Jan. 2017), 341–350. https://
doi.org/10.1109/TVCG.2016.2599030 Conference Name: IEEE Transactions on
Visualization and Computer Graphics.

[71] Jessica Shi, Alperen Keles, Harrison Goldstein, Benjamin C Pierce, and Leonidas
Lampropoulos. 2023. Etna: An Evaluation Platform for Property-Based Testing
(Experience Report). Proc. ACM Program. Lang. 7 (2023). https://doi.org/10.1145/
3607860

[72] Nischal Shrestha, Titus Barik, and Chris Parnin. 2021. Unravel: A fluent code
explorer for data wrangling. In The 34th Annual ACM Symposium on User Interface

Software and Technology. 198–207.
[73] Ezekiel Soremekun, Esteban Pavese, Nikolas Havrikov, Lars Grunske, and An-

dreas Zeller. 2020. Inputs from Hell: Learning Input Distributions for Grammar-
Based Test Generation. IEEE Transactions on Software Engineering (2020).
https://doi.org/10.1109/TSE.2020.3013716 Publisher: IEEE.

[74] C Spearman. 1904. The Proof and Measurement of Association between Two
Things. American Journal of Psychology 15 (1904), 72–101. Publisher: University
of Illinois Press, etc..

[75] Dominic Steinhöfel and Andreas Zeller. 2022. Input invariants. In Proceedings of

the 30th ACM Joint European Software Engineering Conference and Symposium

on the Foundations of Software Engineering (ESEC/FSE 2022). Association for
Computing Machinery, New York, NY, USA, 583–594. https://doi.org/10.1145/
3540250.3549139

[76] Donald Stewart, Koen Claessen, Nick Smallbone, and Simon Marlow. 2024.
Test.QuickCheck — hackage.haskell.org. https://hackage.haskell.org/package/
QuickCheck-2.14.3/docs/Test-QuickCheck.html#v:label

[77] Neeraja Subrahmaniyan, Laura Beckwith, Valentina Grigoreanu, Margaret Bur-
nett, Susan Wiedenbeck, Vaishnavi Narayanan, Karin Bucht, Russell Drummond,

14

https://doi.org/10.1145/3428208
https://doi.org/10.1007/978-3-540-69611-7_1
https://doi.org/10.1007/978-3-319-30936-1_9
https://doi.org/10.1109/ICST.2016.37
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1109/TR.2017.2727062
https://doi.org/10.1109/ICST.2012.147
https://doi.org/10.1109/ICST.2012.147
https://dl.acm.org/doi/10.1145/3158133
https://dl.acm.org/doi/10.1145/3158133
https://joss.theoj.org/papers/10.21105/joss.01891.pdf
https://code.visualstudio.com/
https://doi.org/10.1145/3242744.3242747
https://doi.org/10.22152/programming-journal.org/2022/6/10
https://scalacheck.org/
https://doi.org/10.1145/1982595.1982615
https://github.com/joeyespo/pytest-watch
https://github.com/joeyespo/pytest-watch
https://doi.org/10.1145/1543134.1411292
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1145/3607860
https://doi.org/10.1145/3607860
https://doi.org/10.1109/TSE.2020.3013716
https://doi.org/10.1145/3540250.3549139
https://doi.org/10.1145/3540250.3549139
https://hackage.haskell.org/package/QuickCheck-2.14.3/docs/Test-QuickCheck.html#v:label
https://hackage.haskell.org/package/QuickCheck-2.14.3/docs/Test-QuickCheck.html#v:label

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Lucid Property-Based Testing UIST ’24, October 13–October 16, 2024, Pittsburgh, PA, USA

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

and Xiaoli Fern. 2008. Testing vs. code inspection vs. what else? Male and fe-
male end users’ debugging strategies. In Proceedings of the SIGCHI Conference on

human factors in computing systems. 617–626.
[78] Ryo Suzuki, Gustavo Soares, Andrew Head, Elena Glassman, Ruan Reis, Melina

Mongiovi, Loris D’Antoni, and Björn Hartmann. 2017. TraceDiff: Debugging un-
expected code behavior using trace divergences. In Proceedings of the Symposium

on Visual Languages and Human-Centric Computing. IEEE, 107–115.
[79] Steven L. Tanimoto. 1990. VIVA: A Visual Language for Image Processing. 1, 2

(1990), 127–139.
[80] Jordan Walke. 2024. React. https://react.dev/
[81] April Yi Wang, Will Epperson, Robert A DeLine, and Steven M Drucker. 2022.

Diff in the loop: Supporting data comparison in exploratory data analysis. In
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems.
1–10.

[82] Chenglong Wang, Yu Feng, Rastislav Bodik, Isil Dillig, Alvin Cheung, and Amy J
Ko. 2021. Falx: Synthesis-powered visualization authoring. In Proceedings of the

2021 CHI Conference on Human Factors in Computing Systems. 1–15.
[83] Wikipedia. 2024. Name server — Wikipedia, The Free Encyclopedia. http:

//en.wikipedia.org/w/index.php?title=Name%20server&oldid=1215654110
[84] Wikipedia. 2024. Red–black tree — Wikipedia, The Free Encyclope-

dia. http://en.wikipedia.org/w/index.php?title=Red%E2%80%93black%20tree&
oldid=1215636980

[85] Aaron Wilson, Margaret Burnett, Laura Beckwith, Orion Granatir, Ledah Cas-
burn, Curtis Cook, Mike Durham, and Gregg Rothermel. 2003. Harnessing
curiosity to increase correctness in end-user programming. In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems (CHI ’03). As-
sociation for Computing Machinery, New York, NY, USA, 305–312. https:
//doi.org/10.1145/642611.642665

[86] J. Wing, D. Jackson, and C. B. Jones. 1996. Formal Methods Light. Computer 29,
04 (apr 1996), 20–22. https://doi.org/10.1109/MC.1996.10038

[87] Litao Yan, Elena L. Glassman, and Tianyi Zhang. 2021. Visualizing Examples
of Deep Neural Networks at Scale. In Proceedings of the 2021 CHI Conference

on Human Factors in Computing Systems (CHI ’21). Association for Computing
Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/3411764.3445654

[88] Litao Yan, Elena L Glassman, and Tianyi Zhang. 2021. Visualizing examples
of deep neural networks at scale. In Proceedings of the 2021 CHI Conference on

Human Factors in Computing Systems. 1–14.
[89] Tianyi Zhang, London Lowmanstone, Xinyu Wang, and Elena L Glassman. 2020.

Interactive program synthesis by augmented examples. In Proceedings of the 33rd

Annual ACM Symposium on User Interface Software and Technology. 627–648.
[90] Valerie Zhao, Lefan Zhang, Bo Wang, Michael L Littman, Shan Lu, and Blase Ur.

2021. Understanding trigger-action programs through novel visualizations of
program differences. In Proceedings of the 2021 CHI Conference on Human Factors

in Computing Systems. 1–17.

15

https://react.dev/
http://en.wikipedia.org/w/index.php?title=Name%20server&oldid=1215654110
http://en.wikipedia.org/w/index.php?title=Name%20server&oldid=1215654110
http://en.wikipedia.org/w/index.php?title=Red%E2%80%93black%20tree&oldid=1215636980
http://en.wikipedia.org/w/index.php?title=Red%E2%80%93black%20tree&oldid=1215636980
https://doi.org/10.1145/642611.642665
https://doi.org/10.1145/642611.642665
https://doi.org/10.1109/MC.1996.10038
https://doi.org/10.1145/3411764.3445654

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

UIST ’24, October 13–October 16, 2024, Pittsburgh, PA, USA Anon.

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

A TABLE OF TEST EVALUATION AFFORDANCES IN EXISTING FRAMEWORKS

Table 2: Breakdown of existing test evaluation affordances in popular PBT frameworks.

Hypothesis fast-check quickcheck (Rust) ScalaCheck junit-quickcheck QuickCheck (Haskell)
Tests Run ✓ ✓ ✓ ✓
Tests Discarded ✓ ✓ ✓ ✓
Events / Labels ✓ ✓ ✓ ✓
Generation Time ✓
Warnings ✓

B CONTROL VIEW FOR PYTHON INTERPRETER STUDY TASK

16

	Abstract
	1 Introduction
	2 Background
	2.1 Property-Based Testing
	2.2 PBT Process and Pitfalls

	3 Related Work
	3.1 Current Affordances
	3.2 Interactive Tools for Testing
	3.3 Making Sense of Program Executions
	3.4 Formal Methods in the Editor

	4 Formative Research
	4.1 Methods
	4.2 Testing Goals and Strategies
	4.3 Design Considerations

	5 System
	5.1 Interaction Model
	5.2 Visual Feedback
	5.3 Reactivity and Customizability

	6 Implementation
	6.1 UI Implementation
	6.2 OpenLucid Data Format
	6.3 Expanding the Ecosystem

	7 Evaluation
	7.1 Online Study
	7.2 Impact on the Testing Ecosystem

	8 Conclusions and Future Work
	8.1 Evaluation in Long-Term Deployments
	8.2 Improving Data Presentation for Lucid PBT
	8.3 Improving Control in Lucid PBT
	8.4 Lucid Automated Testing

	References
	A Table of Test Evaluation Affordances in Existing Frameworks
	B Control View for Python Interpreter Study Task

