Delimited Continuations and Monads: Exploring Abstractions from First Principles
Submitted for WPE-II examination April 5, 2021 by Harrison Goldstein.

Committee: Stephanie Weirich (chair), Benjamin Pierce (adviser), Rajeev Alur

This report is intended for a general computer science research audience (including early PhD
students), and assumes basic familiarity with programming languages concepts (e.g., CIS 500 or
equivalent).

Delimited Continuations and Monads*

Exploring Abstractions from First Principles

HARRISON GOLDSTEIN, University of Pennsylvania, USA

In 1990, two programming abstractions were introduced independently: delimited continuations and monads.
These ideas quickly gained popularity, and over the course of 30 years they have permeated programming
languages literature. Modern researchers often assume knowledge of these abstractions when writing papers,
a practice which streamlines exposition but increases barriers to entry.

This report presents both delimited continuations and monads from first principles by following the papers
that originally popularized the ideas. First I discuss Abstracting Control by Danvy and Filinski [2], and then I
explore Comprehending Monads by Wadler [16]. Though the two abstractions initially seem to have little to do
with one-another, delimited continuations and monads actually have a lot in common: they can implement
many of the same design patterns, and their meta-theories are surprisingly compatible. I leverage these
connections to develop intuition and provide context for future reading.

1 INTRODUCTION

Abstractions are the most powerful tools in a computer scientist’s toolbox. They separate high-level
ideas from low-level details, highlighting the novel and interesting parts of a program. Sometimes
a particular abstraction becomes so ingrained in a community that members naturally think in
terms of the abstraction and use it without explanation. Broadly, this is good—a powerful common
language makes it easier to communicate ideas—but it does make it more difficult for outsiders
and new researchers to understand a body of work. This report sets out to explain a couple of
these abstractions for researchers familiar with, but not steeped in, the programming languages
literature.

The notion of delimited continuations is one such abstraction that is ingrained in the programming
languages community. These operators were first presented in Abstracting Control by Danvy and
Filinski [2], and they are one of the many tools used to manipulate program continuations.

A continuation is a first-class representation of the context around a computation. For example,
when evaluating the sub-expression “2” in the program

leti=84inlet j=2ini/j,
we say the context is
leti=84inlet j=_ini/j,
and the continuation, k, is
k=Ax.leti=84inlet j=xini/j.

The continuation captures the context as a function, which can be used as a first-class value. Danvy
and Filinski present two operators for manipulating continuations: “shift k in e” and “reset e” The
reset operation delimits a context, and shift packages that context as a continuation. For example,
we can use shift and reset to extract the continuation from above:

reset (let i =84 inlet j = (shiftkink 2)ini/j) =
letk=(Ax.leti=84inlet j=xini/j)ink2

“This report was compiled for part of the University of Pennsylvania’s WPE-II Exam. The accompanying talk is available on
the author’s website.

Author’s address: Harrison Goldstein, hgo@seas.upenn.edu, University of Pennsylvania, Philadelphia, PA, USA.

Delimited Continuations and Monads 3

We replaced the expression 2 with shift k in k 2, which says “capture the context as k and then
apply that to 2,” and we wrapped the whole computation in reset to delimit the context. The result
is the same as the original expression, but the continuation is made explicit. In that example, the
shift body just applies k, but it can do anything. In particular, if k is not used at all,

reset (let i = 84 in let j = (shift k in Nothing) in i/j)

the expression essentially throws an exception: the context is discarded and the result of the entire
computation is just Nothing. This flexibility makes delimited continuations powerful but also
notoriously difficult for newcomers to reason about.

Another abstraction that is deeply embedded in programming languages literature is the monad.
Monads are notorious for being explained poorly, to the point where people jokingly quote “a
monad is just a monoid in the category of endofunctors”—a sentence which is incomprehensible
even to most community insiders [7, 9]. The internet is filled with monad tutorials that compare the
mathematical structure to burritos (tasty, but unhelpful) and other “more accessible” concepts, but
few provide useful explanations. To avoid falling into this trap of explaining monads badly, I follow
here one of the earliest and clearest explanations of monads for programming, Comprehending
Monads by Wadler [16].

Wadler presents monads using an analogy to list comprehensions like

[(x, 9) | x < [1,2]; y « [3, 4]],

which evaluates to the Cartesian product of the lists [1, 2] and [3, 4]. Wadler observes that
comprehension syntax can be used with more than just lists—in fact it can be used with any
monad. One of the simplest monads is, called Maybe is defined as

data Maybe @ = Nothing | Just «
in languages like Haskell. We can write a Maybe comprehension like,
[i/j| i« [84]M3¥"€; j « if n = 0 then Nothing else [n]MaYbe]Maybe

which uses comprehension syntax with the Maybe monad to abstract over error handling. In the
expression, we first bind i to the value 84. Then we check if n is 0: if it is, the whole expression
results in Nothing, otherwise we bind j to n. Finally, if the computation has not failed, we compute
i/j. Just as list comprehensions provide a way to sequence lists, Maybe comprehensions provide a
way to sequence computations that might fail. There are dozens of monads that programmers use
in practice, each of which gives a different interpretation of comprehension syntax.

Both delimited continuations and monads are interesting on their own, but why present them
together? It is not immediately clear that manipulating continuations has anything to do with
interpreting comprehension syntax; one could be forgiven for assuming that these ideas are largely
orthogonal. But we have already seen that delimited continuations and monads can both be used
to simulate exceptions, and it turns out that there is significantly more overlap. Design patterns
like state, nondeterminism, and more can be implemented using both delimited continuations and
monads. Furthermore, continuations actually form a monad, and Wadler shows that this fact can
be exploited to recover results from Danvy and Filinski.

In this report I make three contributions:

o Iexplain delimited continuations and monads by following two influential papers: Abstracting
Control by Danvy and Filinski (§ 2) and Comprehending Monads by Wadler (§ 3).

o I develop intuition for programming with delimited continuations by implementing a
number of the design patterns that Wadler presents as monads. This solidifies the close
relationship between the two language features (§ 4).

4 Goldstein

o Ipresent the continuation monad and show that, by performing a monad-agnostic transformation
given by Wadler, we can recover the “extended continuation passing style” transformation
presented by Danvy and Filinski (§ 5). This is a small extension of Wadler’s original result.

I conclude with references to further reading that builds on these abstractions (§ 6).

Notation

My source papers differ slightly in notation and conventions. I have chosen a middle-ground and
use one unified set of conventions to discuss both papers. Throughout this report, programs are
written in a lambda calculus with syntax defined by:

ex=x|Ax.e|e e |letx=e;ine;
| true | false | if e; then ey else e3 | n | e + ey

| (e1, €2) | fste|snde]---

The core calculus is made up of variables, x, lambda abstractions, Ax. e, and function application
e; ez. Let-binding makes presentation clearer, so I assume we have that too, although formally I
assume that

let x = e; in ey
is implemented as
(Ax. ez) e,

so I often ignore it in meta-theory. Danvy and Filinski use Booleans and natural numbers to
illustrate delimited continuations; Wadler uses pairs and lightweight data structure definitions to
illustrate monads—TI also use these features as needed. Since we are almost exclusively concerned
with dynamic semantics, I do not formalize a type system.

Built-in language operators are written in blue sans-serif and defined functions are written in
black sans-serif.

2 ABSTRACTING CONTROL

Before explaining delimited continuations, I should explain some background on continuations
and first-class continuation operators. Continuations first appeared as meta-theoretical tools [15],
but before long they were introduced into concrete languages via the continuation-passing style or
CPS translation. Here is a call-by-value CPS translation, C[-], for our basic lambda calculus with
Booleans and if-statements:

Clx] = M.k x

ClAx.e] = Ax.k (Ax.C[e])

Cler e2] = Ak. Cle1] (Af.Clez] (Ax. f x k))

C[true] = Ax. k true

Cllif e1 then e, else es3] = Ak. C[le1] (Ab.if b then C[e,] x else C[les] «)

This translation extracts every evaluation context—essentially every individual sub-term of a
program—as an explicit continuation function. The resulting terms do not “return” in the traditional
sense: when these terms finish computing, they pass the resulting value to a continuation, ,
which is provided as an argument. A translated term can be run by applying it to the trivial

continuation, and C[e] (Ax. x) should have the same semantics as e. In other words, this translation
is semantics-preserving—it only changes the structure of the program.

Delimited Continuations and Monads 5

The CPS translation has been used extensively in compilers and interpreters, where it gives
fine-grained control over evaluation. This is because the translation makes evaluation order explicit.
This particular CPS translation is clearly call-by-value, since in the rule for application,

Cler e2] = Ak.C[le1] (Af.CJez] (Ax. f x x))

the argument e, is evaluated before f is applied.

As CPS translations became more popular, researchers began to consider first-class abstractions
for working with continuations. The most famous of these early abstractions, “call with current
continuation,” or call/cc [5], can be added as an operator in our source language and implemented
as an extension to the CPS translation:

Clcall/cc kin €] = (Ax. C[e] k) [k — Ax. Ak". k x],

where e[x + v] means e with v substituted for free instances of x.

The call/cc operator is extremely powerful. The expression call/cc k in e captures the current
program context as k and then runs e, allowing the programmer to arbitrarily pause and resume
evaluation as they see fit. For example,

call/cckin1
aborts the computation, returning the value 1, and
call/cc k in (print “foo”; k 10)

pauses the computation, prints “foo”, and then resumes computation with the value 10. Unfortunately,
many have argued that call/cc is too powerful. Consider the popular Yin-Yang Puzzle:

let yin = (Ac. (print “@”; ¢)) (call/cc k in k) in
let yang = (Ac. (print “*”; ¢)) (call/cc k in k) in
yin yang

What does this confusing mess of continuations do? Apparently it counts. This program prints
increasing numbers in a unary representation,

“@‘k@‘k‘k@***@*‘k**@*****.uﬂ’
but it is extremely difficult to understand exactly why that is.
Felleisen [3] reigned in the power of call/cc with operators that he called prompt and control.
These allowed programmers to delimit the effects of call/cc with scopes. Unfortunately, Felleisen’s

scopes were dynamic, and his approach did not admit a straightforward translation into a standard
lambda calculus. This was the impetus for Danvy and Filinski’s statically delimited continuations.

2.1 Delimited Continuations and ECPS

In Abstracting Control, Danvy and Filinski introduce the shift and reset operations mentioned in
Section 1, which provide a more usable alternative to call/cc. We extend our lambda calculus:

e x=---|shiftkine | resete

Like call/cc, these operators can be interpreted via a modified CPS translation. Danvy and Filinski
call the new translation extended continuation-passing style (ECPS):

C[shift k in e] = (Ax. C[e] id) [k > Ax. Ak". k" (x x)]
Clreset e] = Ak.x (C[e] id)

The equation for reset e translates e and extracts its final value by applying it to id. This means that
any continuation manipulation done by e does not leak outside of the scope of the reset, so we say

6 Goldstein

that reset “delimits” the continuation. The translation for shift gives e access to its continuation, k,
via the variable k.

Together, shift and reset provide an elegant interface for working with continuations. For example,
take the following expression and its evaluation:

1+ reset (10 + shift k in k (k 100)) =
1+ (10 + (10 + 100)) =
121

B

The continuation, k = Ax. 10 + x, is captured by the shift operator, since “10 + shift k in ...” is
within a context delimited by reset. The outer “1 +” is not captured because it is outside of the reset.
The function k is applied twice to 100, resulting in 120, and then we add 1 to get 121.

2.2 A Denotational Semantics

Danvy and Filinski point out that the ECPS translation, with rules for shift and reset, is no longer
truly in continuation-passing style. In particular, the rule for shift means that the resulting program
might not enforce strict call-by-value semantics, since the translation of shift introduces a redex
k’ (k x). This could be solved by translating the result a second time, but we can use this as an
opportunity to take a step back and look at another way of defining the semantics of our calculus
with shift and reset.

In addition to the ECPS translation, Danvy and Filinski give a denotational translation. Whereas
the ECPS translation is purely syntactic, this transformation is semantic and maps every program to
a mathematical object in a given domain. In this case the domain contains Booleans (since we have
true and false as base values) and computable functions. This is common practice in programming
languages literature and hearkens back to the origin of continuations [15]. Assuming Ans is a
suitable domain of final answers, we define:

p € Env = Var — Val
Y € MCont = Val — Ans
k € Cont = Val —» MCont — Ans
& : Exp — Env — Cont — MCont — Ans

The variable environment, p, maps variables to domain values, y is a “meta”-continuation that
captures the continuation outside of the closest enclosing reset, and x is the continuation that we
are used to (inside of the closest reset). The denotational semantics is given by the equations:

Elx] pry=x(plx]y

E[Ax.e] prxy=x (o.E[e] (p[x —0])) y

Elerex] pry=Eled] p (Af.Ee2] p (Ax. f x x)) ¥

Eftrue] pxy =xtruey

E[if e; then e; else es] p k y = Efle1] p (Ab. if b then Efez] p K else Efes] p k) y
Efshiftkine] pxy=E[e] (plk — Ax. A" Ay’ .k x (Aw. k" wy")]) (Ax. Ay”.y" x) y
Efresete] pxy=Ele] p (Ax. Ay’.y" x) (Ax.k xy)

It is safe to ignore the y arguments for all rules other than the ones for shift and reset, since y can be
n-reduced away (since Ax. f x is equivalent to f). Without y, the first five equations look a lot like
the standard CPS translation, just lifted to a semantic domain. The meta-continuations are used in
the shift and reset rules to capture the outer continuation as a computable function. Remember that

the constructions on the right-hand side are part of a meta-language and represent mathematical
objects rather than concrete syntax. Our continuations are embedded in the meta-theory.

Delimited Continuations and Monads 7

All of this is important for theoretical work on this language, but the syntactic ECPS transformation
is more useful for concrete implementations. Next, we return to the ECPS translation and explore
ways that it can be made more efficient.

2.3 Metacircular Interpreters

A metacircular interpreter is a powerful tool for expressing a language’s semantics [12]. In the case
of our shift-reset language, the metacircular interpreter looks a lot like the ECPS translation, but it
does a bit more work by translating constructs an executable meta-language rather than generating
syntax directly.

The meta-language for this interpreter, is the same lambda calculus we have been working
with, but without shift or reset. We use a simple quoting mechanism to specify which parts of the
output are executable code and which are concrete syntax. The code in black is the executable
interpreter, while the "quoted™ code is concrete syntax output. We use (unquote brackets) to splice
computations into quoted segments. The translation is defined as:

C'lx] = Ax.x x
C'[Ax.e] = Ak.x "A(x). Ak. (C'[e] (Aa."k (a) ™))"
C'[er e2] = Ak. C'[ler] (Af.C'[ea] (Ax.T(f) (x) (At (= ")) 7))
C’[true] = Ax.k true
C'[if e; then e; else e3] = Ax.C'[er]] ("Ab.if b then (C’[ez] x)) else (C'[es] k) ™)
C'[shift k ine] = (Ax.C’[e] id) [k — "Ax. Ak". k" (k "x7) 7]
C'[reset] = Ak.x (C’[e] id)

and the final ECPS result is given by applying C’[e] to the identity function.

Like in to the denotational semantics, the continuations are all meta-functions; there are no
ks in the resulting programs. The difference is that the meta-functions are executed to produce
concrete syntax, rather than interpreted as abstract functions. For example, the rule for if-statements
will produce a concrete term of the form Ab. if _ then _ else _, rather than a mathematical object.
Representing continuations at the meta-level drastically reduces the size of the resulting programs—
there are no unnecessary redexes in the output.

It turns out that we can do even better if we include shift and reset in our meta-language. This
final ECPS translation,

C'lx] =x

C"[Ax.e] = "A(x). Ak. (reset ("x (C"'[e]))™

C"[e1 e2] = shift k in "(C"[ex]) (C"'[ez]) (At. (x "t7))"

C"'[true] = true

C"'[lif e; then e, else e3] = shift k in
Tif (C”"[e1]) then (reset (x C"'[ez])) else (reset (x C"'[es]))”
C"'[shift k in e] = shift k in (reset C”[e]) [k > "Ax. A" k" (x "x7)7]
C"'[reset e] = reset C”'[e]

also avoids unnecessary n-expansion (i.e., it always produces f instead of Ax. f x), resulting in a
pleasingly compact final representation.

This final interpreter is essentially written in the same language that it interprets—this is why
metacircular interpreters are called “meta”—and that poses a bootstrapping problem. Luckily, we

8 Goldstein

already have both the ECPS translation and our denotational semantics as descriptions of this meta-
language. The efficient interpreter can be written in this meta-language and then that interpreter
can itself be ECPS transformed into a standard lambda calculus.

2.4 Use Case: Nondeterministic Programming

We can understand this machinery better by examining a use-case for delimited continuations that
Danvy and Filinski mention in their paper: nondeterministic computations.
We start by defining operators fail and flip, which form the basis of nondeterministic computation:

fail () = shift k in “failure”
flip () = shift k in (k true; k false; fail ())

We can think of flip as flipping a coin and fail as signaling a dead-end outcome.

Concretely the fail operation acts as an exception. It throws away the continuation and returns
the string “failure”. The flip operation calls its continuation on both true and false, which simulates a
nondeterministic choice between the two options. This works because the result of the nondeterministic
computation is actually a sequence of values—all of the possible outcomes. When we call flip, the
possible options are true and false, so we continue with both. If later in the computation one of
those values is undesirable, we can call fail.

The choice operation builds on flip to simulate a nondeterministic choice of positive integers
less than a given value.

choice n = if n < 1 then fail () else if flip () then choice (n — 1) else n

Calling choice 2 will continue with 2, then 1, and then “failure”.
Finally, Danvy and Filinski implement the function

triplens =

let i = choice n in

let j = choice (i — 1) in

let k = choice (j —1) in

if i+ j+k =sthen (i, j, k) else fail (),
which finds all triples of distinct positive integers that sum to a given integer s. The complexity is
pushed into choice, so this function is nice and readable. Evaluating the expression

reset (print (triple 9 15))

prints all triples of integers up to 9 that sum to 15.

The triple example is mostly a toy based on an early benchmark, but these primitives can be
practically useful. In their paper, Danvy and Filinski show an evaluator for nondeterministic finite
automata (NFAs), which is straightforward to implement thanks to operators like flip and fail. The
implementation is not especially instructive, so I do not repeat it here.

We return to continuations later on, but for now we can take a break from continuations and
look at monads.

3 COMPREHENDING MONADS

As mentioned in Section 1, monads are as popular as they are poorly understood. They were
originally introduced to the programming languages literature by Moggi [10], who was working in
category theory. Luckily, monads can be understood without learning a new branch of mathematics,
and Comprehending Monads by Wadler [16] is a great place to start.

Delimited Continuations and Monads 9

A monad is essentially just a data structure (e.g., List or Maybe) with certain associated operations.
First, a monad must have an operation map that applies a function to the “elements” of the data
structure. For example,

m alest f X
applies f to all elements of x and
m alj)Maybe f %
applies f to the value contained in X, if one exists. (I adopt Wadler’s convention of writing monadic
values with a bar over the variable name.) The map operation must obey two laws:

map id = id
map (g o f) = map g o map f

The first law says that mapping the identity function over a structure does nothing—this is necessary
to make sure that map does not change the structure itself, only the elements in the structure. The
second law says that map is well-behaved with respect to function composition.

A data structure with a valid map operation is called a functor. In order for a functor to be a
monad, it needs two more operations: unit and join. Applying unit to a value injects that value into
the monad structure. In the case of List,

unit™st x = singleton x = [x],

which is the simplest way to inject a value into a list. Likewise,

unitMa¥be x = Just x.

The join operation works on “doubled up” instances of the monad. It takes a doubled value like
[[1,2],[3,4]] or Just (Just5)
and flattens it down to a single application of the monad like
[1,2,3,4] or Just5.
To be precise:

joinbist X flatten x

joinMavbe 5 = case X of { Just (Just x) — Just x; _ — Nothing }

These operations must obey certain laws in order for the structure to truly be a monad:

map f o unit = unito f (1)
map f o join = join o map (map f) (2)
join o unit = id (3)

join o map unit = id (4)
join o join = join o map join (5)

Law (1) and (2) enforce that unit and join are well-behaved with respect to map. In particular, (1) is
a strong statement that says that unit cannot do very much—it must commute with an arbitrary
function f (modulo the monad structure). Law (3) says that applying unit to a monadic value and
then join-ing is a no-op. Law (4) says the same as (3) except we apply unit under the monad using
map. Finally, law (5) says that for a triple-stacked monad (e.g., [[[1]]]), either way of flattening it
to a single monad (e.g., [1]) is the same.

Importantly, the monad laws require that unit and join are the simplest ways to do their respective
tasks. For example, suppose we tried to define:

List

unit™* x = [x, x, x, x, x|

10 Goldstein

Technically this does inject a value into a list, but it is not the simplest way to do so and
(join' st o unit™st) [3] = [3, 3, 3, 3, 3] #id [3].

All of this background on monads and their operations is important, but in practice using these
operations directly does not make for particularly elegant code. In the next section, I explore
Wadler’s use of comprehensions to make programming with monads much more intuitive.

3.1 Comprehensions

Comprehending Monads does more than just explain monads. As the name cleverly suggests, the
paper develops a notation for monadic computations derived from list comprehensions.

List comprehensions are based on set-builder notation (e.g. {n + 1 | n € N}) and were first
introduced to programming by the SETL language in the 1960s [14]. Since then, list comprehensions
have become ubiquitous, appearing in many modern languages including Racket, Python, and even
C++ (with some abuse of operator overloading). Comprehensions are a convenient way of building
lists from other lists, for example a construction like

[) | x =%y <G
computes the Cartesian product of X and y. The analogous set-builder construction looks like
{(x,y) | xeXAyeY}

List comprehensions have the form [e | ¢], where q is called a qualifier. Wadler defined the
syntax of qualifiers as:
qi=Alx—el(q; q2)
Qualifiers can be empty (denoted A), a binder for a variable x, or a composition of two qualifiers.
This notation can be a bit heavy, so Wadler usually writes “[e]” instead of “[e | A],” and he proves
that qualifier composition is associative so he can write “[e | g1; ¢2]” instead of [e | (q1; ¢2)]
Comprehending Monads centers around the observation that lists are not the only structure for
which comprehensions make sense. We can characterize behavior of list comprehensions with
following rules:
[e | A] = singleton e
[e1 | x « e2] = map (Ax.e1) ez
[e | (915 q2)] = flatten [[e | g2] | g1]
Notice that singleton is unit"st and flatten is join"*, Would using unit and join for other monads
give a reasonable way to re-interpret comprehensions?
Yes! Wadler defines a lambda calculus with generic monad comprehension syntax:
ex=---|[e]q™
gi=Alx—el|(q q)
For any monad M the monad comprehension behaves according to the following rules:
[e| AIM = unitM e

M

ler | x < ex]™ = mapM (Ax.e;) e,

[e | (q15 g2)1™ = join™ [[e | g21™ | gu]™
The empty qualifier simply injects e into the monad using unit. The binding qualifier defines a

function: e; produces some monadic value, and the result of the comprehension is Ax. e; mapped
over that value. Finally, qualifier composition translates to a nested comprehension which is

Delimited Continuations and Monads 11

flattened using join. Note that while Wadler opts to extend the language with comprehensions,
they could instead be implemented as syntactic sugar—in other words, they can be implemented as
surface syntax and omitted from the formal language.

Comprehensions can be used for computations like the Maybe comprehension from Section 1,

[i/j| i« [84]M3¥%¢; j «— if n = 0 then Nothing else [n]MaYbe]Maybe

which cleanly handles the fact that the expression binding j might fail, without introducing
significant syntactic overhead.

3.2 Examples of Monads

List and Maybe are far from the only monads, and while the formal definitions are important, the
best way to understand monads is by example. Wadler presents a whole zoo of monads in his paper;
exploring those structures provides valuable intuition for how monads work and what they can do.

For each of these monads, I define the monad data structure (with a fairly standard syntax, similar
to Haskell) and the three operations, map, unit, and join. I assume that we have case-statements in
our language for destructuring these data structures.

3.2.1 List and Maybe. The Running Examples
data List « = Nil | Cons a (List @)
map'st fx = case X of { Nil = Nil; Consy g — Cons (f y) (map"*t f7) }
unithist x = singleton x
jointist X = flatten x
data Maybe @ = Nothing | Just
mapMbe fX = case X of { Nothing — Nothing; Just y — Just (f y) }
unitMaybe 5 = Justx
joinMaybe 5 case x of { Just (Just x) — Just x; _ — Nothing }

We have already seen the definitions for List and Maybe: the List monad coincides exactly with
list comprehensions, and the Maybe monad can be used to sequence computations that might fail
(returning Nothing).

3.2.2 Identity and Strictness. The Degenerate Cases

datalda =
map'? fx
unit'd x

joinId X =

Il
RI® R
bl

data Stra =
mapStr f}
unitSt x =

joinSt X

= K

if x # L then f x else L

==

List and Maybe are relatively simple monads, but there are a couple that are even simpler. The most
basic monad is just an identity—it does nothing. This monad is almost not worth mentioning, but it
does have one cute use-case: comprehension syntax for the identity monad can be used instead of
let binding. We can write

[es | x «—e; y ez]'d

12 Goldstein

instead of
let x = e inlety =e;in es.
There is no real reason to prefer this syntax, so I will continue to use let, but it is a fun observation.
A slight variation on the identity monad, the strictness monad, does actually have some interesting
uses. Assuming a call-by-name base language, the strictness monad provides control over evaluation
order by altering the definition of map to force the evaluation of the argument x. The expression

les | x < eg; y «— e

works like
letIx =ejinletly = ey ine;

where let Ix = ey in e, forces the evaluation of e; before assigning to x. Str comprehensions give
access to call-by-value semantics as needed, without changing the underlying language.

3.2.3 State. Pure “Imperative” Programming
data Statea = o — (a, 0)
map>@® fx = lAs.let (x,s’) =xsin (fx, ")
unitState x = As.(x, 5)
joinState 5 = As.let(x,s")=xsinxs’

The State monad enables code that looks stateful, even though there are no actual references under
the hood. Assuming a fixed type o of states, the type o — (a, o) says that each stateful computation
takes a state as input and produces a result of type «a along with a new state.

Since State is such an important and interesting monad, we should look at the operations in a
bit of detail. As usual, unit is the simplest; it simply injects a value into a stateful computation.
The state stays the same, and the result is the argument passed to unit. The map operation takes a
computation, runs it, and then applies a function to the result value. Finally, join runs a computation
which results in another computation, and then it runs that computation to get a final result. These
operations together mean that state comprehensions act like imperative code, with state handled
implicitly.

As with many monads, interesting programs in the state-monad make use of some auxiliary
operations:

get = As.(s, 8)
puts” = 2As.((), s")
The get operation accesses the state, and the put operation sets the state. These can be used to
write a program like
p=1[k|ie get; _« put(i+3); j « get; _« put (j*7); k « get]>2e,
which simulates a simple stateful computation. We can call p 3 (choosing 3 as the initial state) to
get the pair (42, 42). If we expand the comprehension syntax and monad operation definitions,

Aso. let (i, s1) = get sg in
let ((), s2) = put (i+3) s1in
let (j, s3) = get sy in
let ((), s4) = put (j *7) s3 in
let (k, s5) = get sqin
(k, s5),

Delimited Continuations and Monads 13

we can see that the state parameters s, s, etc. are being passed from one expression to the next,
tracking the state as it evolves.

3.24 Reader. AKA “State Reader”
data Readera = p—oa«a
mapReader £ = Ar. f(xr)
unitReader 5 = Ar.x
joinReader 5 = r.(xr)r

The Reader monad is a simplification of the State monad that does not allow the state to be modified.
Despite its relative simplicity, the Reader monad is quite powerful. After defining the auxiliary
operation,

ask = Ar.r,
Reader can be used to keep track of configuration values, environment information, and any other
static value that would otherwise be cumbersome to pass around explicitly. Readers are also safer

and more flexible than global variables or constants, since they are implemented as functions and
thus have a clearly delimited scope.

3.2.5 Nondeterminism. The (Power) Set Monad
dataNDa = P(a)
mapNP fx = {fx|xex}
unitNP x = {x}
joinNP X = Ux

The nondeterminism monad enables direct-style programming of nondeterministic algorithms,
much like the triple example from Section 2.4. A nondeterministic value is really a set of values,
corresponding to each of the possible outcomes of a nondeterministic computation. We define the
same operators that we saw before:

fail @
flip {true, false},

We can fail by returning the empty set—there are no possible outcomes—and we can also flip
between true and false as expected.

The monad operations keep track of all possible outcomes at a given point in the program, but
programs can be written as if there is only one path.

3.2.6 Parser. Top-Down Parser Combinators

data Parser @ = String — List (a, String)

mapParserf)—C i [(f X, l'/) I (x’ l'/) —x i]List

unitfarser 5 i [(x’ i)]List

joinParser X MO i) | (% 7)) « X 05 (x, i) « xi']5s

Finally, here is a more complicated monad: Parser. Parsers can be seen as a combination of two
monads: List and State. Intuitively, the String argument is the parser input, and the result is a list
of potential parses, each of which is made up of a result of type & and the String that remains after
parsing.

There are a number of auxiliary operations that are useful for Parser (often called parser
combinators), including satisfy which parses a character matching a given predicate and many

14 Goldstein

which applies a parser multiple times. An amazing amount of research has been done on the Parser
monad and parser combinators [6, 8], and it is still an active area [18].

3.3 Other Formulations of Monads

Before moving on, I want to address some other formulations of monads that have become more
popular since Comprehending Monads was published.

A monad’s join operation can be used to define special kind of function composition called Kleisli
composition. Given a monad M and two functions f : f - Myandg: @ — M , we can write a
function

om g = join™ o mapM fo
9= p 9

that composes them together while properly keeping track of M. This is useful for programming
because it means that monadic operations like f and g can be built up individually and composed
together to build larger programs. A very similar construction can also yield the bind (or »=)
definition of monads that is more common in modern programming languages.

The bind definition of monads admits syntactic sugar called do—notation, which is popular in
Haskell. Do—notation is actually very similar to monad comprehension syntax:

do { i « unitM¥¥b€ 84; j (if n = 0 then Nothing else unitMa®e n); ynitMavbe j/;}

The distinctions between comprehension syntax and do—notation are mostly cosmetic. When
using do-notation, programmers write “unitM2¥*¢ ¢” (or more idiomatically “return e”) instead of
“le]M” Also rather than put a return value at the front of the comprehension, do-blocks evaluate
to their final expression. For the remainder of this paper I stick to comprehension syntax, but
programming-focused monad examples usually use something closer to do—notation.

Next, we examine examples of monads that are defined using delimited continuations.

4 COMMON DESIGN PATTERNS

The monadic design patterns that Wadler presents are also a great showcase for delimited continuations.
We have already seen delimited continuations implement exceptions (Maybe) and nondeterminism
(ND), but it turns out that they can be used to implement all of the monads from the previous
section.

This presentation was inspired by a blog post by Xia [19], which shows how to implement a
variety of monads using continuation-passing. Following Xia’s definitions, I present each pattern
by defining (1) the primitive operations for the pattern and (2) a run function that delimits the
scope of the computation using reset.

4.0.1 Maybe. See Section 3.2.1

abort shift k in Nothing
runMaybe ¢ = reset (Just c)

We have already seen exceptions in the contexts of both continuations and monads already, although
I have been imprecise when “throwing an exception” using shift. This construction faithfully
simulates the Maybe monad, since its computations either fail and return Nothing or succeed with
a value v and return Just o.

Delimited Continuations and Monads 15

4.0.2 ldentity and Strictness. See Section 3.2.2
noope = shiftkinke
run'dc = resetc
forcee = shiftkink (ife # L theneelse 1)
runstc = resetc

Identity can be encoded without using continuations at all, of course, but this presentation is
instructive. Here the noop operation shows how to do nothing using delimited continuations—just
call the continuation. All run needs to do is delimit the continuation scope.

Just like with monads, we can also encode strictness (provided our source language is non-strict).
We do the same trick as before, forcing e and then calling the continuation.

4.0.3 State. See Section 3.2.3

get shift kinAs.kss
put s’ shiftkinAs.k () s’

run®€ ¢ = reset ((Av.1s.0) c) i

As with the state monad, encoding state with continuations is about capturing state in function
parameters and return values. Our continuations take two parameters: the first is the computation
result, and the second is the new state. The get operation takes in the current state and continues
with that state as both the result and the new state. The put operation ignores the current state and
continues with unit as the result and s” as the new state. The run function takes an initial state and
passes it in outside the continuation scope.

As with the monadic version, these operations can be used to simulate stateful code. For example,
this program, which is essentially the same program from Section 3.2.3,

run>@€ (let j = get in
put (i +3);
let j = get in
put (j = 7);
get) 3

returns 42 as expected. In this case the control flow is a bit more complicated, but the intuition is
the same as for the monadic version.

4.0.4 Reader. See Section 3.2.4

ask = get
Reader _ I.unState

run

Reader is strictly simpler than State, but we can use the same definitions anyway. We just rename
get to ask and don’t provide a put operation.

4.0.5 Nondeterminism. See Section 3.2.5
fail = shiftkink @
flip = shiftkin k true U k false
runNP ¢ = reset ((Av. {0}) ¢)

16 Goldstein

We already saw one way of encoding nondeterminism using continuations, but here is another one
that is a bit closer to the monadic presentation. We again make use of sets to define the primitive
operations fail and flip: Our implementation of run lifts computations into singleton sets, and our
operators call the continuation on whatever values should be considered—either nothing in the
case of fail or both true and false in the case of flip.

4.1 Other Monad Implementations

A couple of Wadler’s monad examples are missing here, but not for any fundamental reason. List
can be implemented using delimited continuations without issues, but there are a number of subtly
different ways to do it and the technicalities are not informative. Parsers can also be done using
shift and reset, but the construction is complex and, again, not informative. It would seem that
anything that can be done with monads can also be done with delimited continuations.

It turns out that with enough effort, this is roughly true! A few years after Abstracting Control,
Filinski [4] published another paper showing that delimited continuations can represent all pure
monads (roughly those whose map, join, and bind operations can be implemented in our base lambda
calculus). While the constructions in Section 4 are ad-hoc and dependent on the particular monad in
question, Filinski managed to give a translation that represents monadic patterns with continuations
once-and-for-all. Still, the ad-hoc connections are valuable: they provide more granular intuition
than Filinski’s presentation, and they are all entirely pure, while Filinski’s formulation relies on a
single reference cell.

5 THE CONTINUATION MONAD

Up to this point we have viewed delimited continuations and monads in parallel, bouncing back and
forth between the abstractions and showing how they compare. But there is one final insight from
Wadler’s paper that I skipped over, and it serves as a bridge between continuations and monads.

Towards the end of Comprehending Monads, Wadler presents the continuation monad. Given a
result type, p, the continuation monad is defined as:

dataConta = (xa—p)—p
map® fx = Ak.X (Ax.x (f x))
unit®"x = Ak.kx

join®"E = Jkx (XX)

Cont « is a computation that take a continuation expecting an input « and producing a result of a
fixed type p. The map operation composes a function f with the continuation, unit simply continues
with a given value, and join untangles nested continuations to enable chained computations.

If this seems complicated, it is, but it builds on the intuition we built up from Abstracting Control.
Programs written using the continuation monad are automatically in a continuation-passing style.

A sequence of operations

[(cy) | x Xy g™

expands to
Ak.x (Ax. 7y (Ay. k (x, y))),
which is precisely the way a tuple of expressions would be evaluated in CPS. The order of evaluation
is clear: first x is evaluated, then y is evaluated, and finally the results are packed into a tuple.
As with many of the monads before, we can define auxiliary operations that interact in useful
ways with the monad operations. In particular, we can define our friends shift and reset!
shift f = Ax. f (Ax. Ak’ k' (k x)) (Ax. x)

resetx = Ak.k (x (Ax.x))

Delimited Continuations and Monads 17

These definitions are based closely on the ECPS translation, but whereas in Section 2 we built these
operations into the language, now they are simply defined. This means that there is no need to
extend any meta-theory—we can interpret these operations in the same lambda calculus that we
worked with in Section 3.

In particular, this means that we can use the Cont comprehension to write programs like

[x+y|x« [1]; y < reset [u+v | u « [10]; v « shift(Ak.[b | a « k 100; b « k a])]],
which is equivalent to the program
1+ reset (10 + shift k in k (k 100))

that we saw when discussing Abstracting Control. The monad version is a bit more verbose, but,
critically, neither version relies on manually managing continuation parameters; they are both
written in a direct style.

The continuation monad shows just how closely related continuations and monads are—CPS
is a monad! But we can actually take this one step further, using a monad embedding defined by
Wadler.

5.1 Recovering ECPS

Wadler presents a translation, e*, that lifts a program of type @ — f to one of type « — M S for
some monad M. The resulting function takes a value of type a and returns a computation of type f.
The monad M captures the effects of that computation. Here is the translation in full:

= [x™
(Ax.e)* = [Ax. e]M
(e1 e))" = [y|f<—el,x<—ez,y<—fx]M
(e €)' =[(xy) | x —efs y — ;]
(fst e)* = [fstx | x — "M

Each of these rules has a straightforward computational meaning. For example

(e1e)" =[y|f—eix—ep;ye— fx™

says that in order to evaluate a (potentially effectful) application, we evaluate e; to f, then evaluate
ez to x, and then evaluate the application (f x), all the while keeping track of any side effects that
are produced.

If our source language had an impure effect, for example built-in operations get and put that
manipulate a reference cell, we could fix M = State and add translations

get” = [x | x « get]Stae

(put e)* = [u | x < e*; u « put x|
where get and put are defined as in Section 3.2. The result of the translation no longer requires
references and is potentially simpler to reason about.

We can apply this transformation to translate programs from Section 2 into programs from
Section 3, using target monad M = Cont. We add rules to translate “shift k in e” into “shift (1k.e)”
and “reset e” into “reset e”. Shockingly, we obtain exactly the ECPS translation presented by Danvy

18 Goldstein

and Filinski!
Cont Monad ECPS
x* = [x]Cont =Ak.kx
(Ax.e)" = [Ax.e*] o = k. x (Ax.e")
(ere) =[y| fef; x ey fx] = Ak.e] (Af.e; (Ax. f x k))
(e e2)" = [(x,9) | x — € y —] = Jx. €] (.} (y.k(x, 1))
(fst e)* = [fst x | x « e*]Con = Ak.e" (Ax.fst x)
(shift k in e)* = shift (Ak.e¥) = (Ax.e" id)[k > Ax. A" k" (x x)]
reset e* = reset e” = Ak.k (" id)

This is truly beautiful. It means that the continuation monad entirely captures the semantics
of a language with first-class continuation operators. Even though Danvy and Filinski give their
language no fewer than four semantic interpretations (including ECPS, a denotational semantics, and
two meta-circular interpreters) Wadler managed to find one more way of looking at continuation
semantics.

(Of course, Wadler did not present exactly this result. He observed that the call-by-name
translation results in the unusual call-by-name version of the CPS translation, but since shift
and reset did not exist, he did not complete the ECPS picture. I am sure that the full ECPS—-monad
embedding is not novel, but I connected the dots independently.)

6 CONCLUSION

No single paper could fully explain either delimited continuations or monads, much less the two
together. The goal of this report is simply to establish a foundation for further understanding.

For more reading on delimited continuations (and continuations in general) look for work that
deals with control flow. As previously mentioned, continuations were first used as meta-theoretic
tools, and Strachey and Wadsworth were among the earliest to use continuations [15]. Their
goal was to give a semantics for GOTO statements. Modern work on delimited continuations is
extremely diverse, ranging from automatic differentiation [17] to logic programming [13]. Hands-on
exploration of shift and reset can be done in languages like Racket and Scheme.

Further reading on monads can be found throughout the functional programming literature.
Languages like Haskell—which uses monads to isolate all effectful code—rely on monads in even
the simplest programs, and all research on those languages implicitly involves monads. More
theoretical papers using monads often use them to embed effects in languages [11] or to define
other more complex abstractions [20].

Finally, some modern ideas build on both delimited continuations and monads, most notably
algebraic effects [1]. Algebraic effects define effect operators and handlers, which build on many of
the ideas behind shift and reset. These abstractions also isloate programmatic effects in a style very
similar to that of monads, and many think they can be replacement for monadic effects in some
programming languages.

Delimited continuations and monads are both amazing ideas, and this report only scratches the
surface. Still, I hope it is a helpful resource for those who want to learn more about the field of
programming languages and need an introduction to some of its ingrained abstractions.

Delimited Continuations and Monads 19

REFERENCES

[18]
[19]

[20]

Andrej Bauer and Matija Pretnar. Programming with algebraic effects and handlers. Journal of logical and algebraic
methods in programming, 84(1):108-123, 2015.

Olivier Danvy and Andrzej Filinski. Abstracting control. In Proceedings of the 1990 ACM Conference on LISP and
Functional Programming, pages 151-160, 1990.

Mattias Felleisen. The theory and practice of first-class prompts. In Proceedings of the 15th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 180-190, 1988.

Andrzej Filinski. Representing monads. In Proceedings of the 21st ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 446-457, 1994.

Christopher T Haynes, Daniel P Friedman, and Mitchell Wand. Continuations and coroutines. In Proceedings of the
1984 ACM Symposium on LISP and functional programming, pages 293-298, 1984.

Graham Hutton and Erik Meijer. Monadic parser combinators, 1996.

James Iry. A brief, incomplete, and mostly wrong history of programming languages, May 2009. URL http://james-
iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html.

Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser combinators for the real world, 2001.

Saunders Mac Lane. Categories for the working mathematician, volume 5. Springer Science & Business Media, 2013.
Eugenio Moggi. Notions of computation and monads. Information and computation, 93(1):55-92, 1991.

Jennifer Paykin and Steve Zdancewic. The linearity monad. ACM SIGPLAN Notices, 52(10):117-132, 2017.

John C Reynolds. Definitional interpreters for higher-order programming languages. In Proceedings of the ACM annual
conference-Volume 2, pages 717-740, 1972.

Tom Schrijvers, Bart Demoen, Benoit Desouter, and Jan Wielemaker. Delimited continuations for prolog. Theory and
practice of logic programming, 13(4):533-546, 2013.

Jacob T Schwartz, Robert BK Dewar, Edward Dubinsky, and Edith Schonberg. Programming with sets: An introduction
to SETL. Springer Science & Business Media, 2012.

Christopher Strachey and Christopher P Wadsworth. Continuations: A mathematical semantics for handling full
jumps. Higher-order and symbolic computation, 13(1):135-152, 2000.

Philip Wadler. Comprehending monads. In Proceedings of the 1990 ACM Conference on LISP and Functional Programming,
pages 61-78, 1990.

Fei Wang, Daniel Zheng, James Decker, Xilun Wu, Grégory M Essertel, and Tiark Rompf. Demystifying differentiable
programming: Shift/reset the penultimate backpropagator. Proceedings of the ACM on Programming Languages, 3
(ICFP):1-31, 2019.

Jamie Willis, Nicolas Wu, and Matthew Pickering. Staged selective parser combinators. Proceedings of the ACM on
Programming Languages, 4(ICFP):1-30, 2020.

Li-yao Xia. The reasonable effectiveness of the continuation monad, Oct 2019. URL https://blog.poisson.chat/posts/2019-
10-26-reasonable-continuations.html.

Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C Pierce, and Steve Zdancewic.
Interaction trees: representing recursive and impure programs in coq. Proceedings of the ACM on Programming
Languages, 4(POPL):1-32, 2019.

http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
https://blog.poisson.chat/posts/2019-10-26-reasonable-continuations.html
https://blog.poisson.chat/posts/2019-10-26-reasonable-continuations.html

	Abstract
	1 Introduction
	2 Abstracting Control
	2.1 Delimited Continuations and ECPS
	2.2 A Denotational Semantics
	2.3 Metacircular Interpreters
	2.4 Use Case: Nondeterministic Programming

	3 Comprehending Monads
	3.1 Comprehensions
	3.2 Examples of Monads
	3.3 Other Formulations of Monads

	4 Common Design Patterns
	4.1 Other Monad Implementations

	5 The Continuation Monad
	5.1 Recovering ECPS

	6 Conclusion
	References

