. 1. WHAT ARE UNGENERATORS?
Harrison Goldstein

s
{
~ "
4 X ;'(y
‘
4 e
S ;
:;\,‘.orir
» R 74 j
15 = B .
Yy ALOE g
; 4 %

Generators operate like parsers: they transform randomness PARSER PRETTY-PRINTER

; : UNIVERSITY OF PENNSYLVANIA into structured data. Str-j_ng o = String

% — It is well known that bidirectional programming can be used to

reverse a parser, resulting in a compatible pretty-printer (where
parse . print = id). GENERATOR UNGENERATOR

KEY POINTS We use the same technique to turn a generator into a compatible éﬁ"% — d a — May be é%
ungenerator.

 Generators are probabalistic programs that produce random test inputs for

scenarios like property-based testing. The program genTree can be used as a generator for random binary trees, but it can also be used as an

. Ungenerators act as backward generators and recover the random choices that ungenerator. In the backward direction, we recover a list of generator choices that might produce a given tree.

lead to a given test input.

genTree BiGen Tree Tree /6\
GENERATOR UNGENERATOR genTree = N\
Y 5 select "Tree" [return Leaf T Num T T
¢& — a a = Maybe ¢4 [» , ree Num Tree Tree
- Our framework allows users to define generators and ungenerators simultaneously X ¢ comap getVal genNum
. - .. O > enerate ungenerate
with minimal extra code. These bidirectional generators are extremely expressive. L ¢ comap getlLeft genTree S S
.. C . . r < comap getRight genTree
- Ungenerators can be used to optimize generator distributions by extracting return (Node 1 x r)
choices from existing inputs and informing future generator choices.]
where

genNum = select "Num" [return x | x « [1 10]1]

T T T W TR O T TEEOEEERERET

2. IMPLEMENTATION 3. CASE STUDIES

We briefly present three case studies that show off what ungenerators can do. System F is evidence that bidirectional generators are
expressive enough for interesting tasks; INruTs FrRoM HELL and RLCHEck both show how ungenerators can be used to build on existing
results in the testing literature.

Normal QuickCheck generators are built using a
mondadic interface.

class Applicative m = Monad m where

return :: a — m a
(=) ma—> (a > mb) > mb

The return function makes a trivial generator, and »= is
used to sequence generators.

We follow Xia, er AL. 2019 and add support for
bidirectional computation by requiring that our
generators also be profunctors:
class Profunctor p where
comap (c > Maybe b) > pba > pca
The comap operation is the secret implementing

bidirectional computations compositionally — it allows
the programmer to annotate correct behavior for the
backward direction locally. Then the monad's bind can be
used to compose these bidirectional programs together.

class (forall a. Monad (g a), Profunctor g) =
BiGen g where

select String = [g a a] > g a a

The select operation completes the interface, providing
a way to make random choices in the forward direction
and recover random chocies in the backward direction.

So far we have only scratched the surface of what we think ungenerators are capable of.

SYSTEM F

The monadic profunctor interface can
express complex generators, including
one for well-typed System F programs.

Generators for well-typed programs
usually generate a type first and then
generate an expression of that type:

genlype
»— genkxpr

For the equivalent ungenerator, we use
our type checker to recover the type in
the backward direction.

comap typeOf genType
— genkExpr

While it does require some extra effort,
this annotation is the only major
change to the generator structure.

INPUTS FROM HEIL

SORMEKUN, ET AL. 2020 describes grammar-
based generators that learn input
distributions from input samples.

Given a sample parse tree, they construct a
probabalistic grammar that produces similar
trees by counting the non-terminal
expansions in our sample and biasing the
grammar accordingly:

A
B A — 100%pB ‘ 0% C
|'3 > B — 50%B ‘ 50% ' !

Ungenerators generalize this process for
monadic generators.

66% 33% 100% A\
Tree Tree

Num

RILLCHECK

Reppy, ET AL. 2020 presents a tool
called RLCheck, which wuses
reinforcement learning to guide a
generator to interesting inputs.

The standard version of RLCheck

starts by making uniformly random
choices; as generation progresses,
those choices are refined to produce
tests with desirable properties.

GENERATE

~E S (5)

REWARD

genTree

By reimplementing the RLCheck
algorithm in terms of bidirectional
generators, we are able to pre-train
the algorithm and improve its initial
choices.

REFERENCES

Soremekun, Ezekiel, et al. "Inputs from Hell: Learning Input Distributions for

Grammar-Based Test Generation." IEEE Transactions on Software
Engineering (2020).

Xia, Li-yao, Dominic A. Orchard, and Meng Wang. "Composing bidirectional programs
monadlcally Lecture Notes in Computer Science 11423 (2019): 147-175.

Reddy, Sameer, et al. "Quickly generating diverse valid test inputs with reinforcement

learning.” 2020 IEEE/ACM 42nd International Conference on Software Engineering
(ICSE). IEEE, 2020.

