
Programming Language Support
for Natural Language Interaction

Alex Renda
Cornell University

Harrison Goldstein
Cornell University

Sarah Bird
Facebook

Chris Quirk
Microsoft Research

Adrian Sampson
Cornell University

ABSTRACT
Modern conversational user interfaces depend on natural language
understanding (NLU) engines, but integrating these capabilities
creates a new category of engineering challenges. Developers write
verbose, unsafe code to intermediate between NLU services and ap-
plication logic, and ambiguous parses further complicate handling.
We present a DSL for configuring an NLU model that ensures con-
sistency and type safety, and we propose a new language construct
to express ambiguity by exploring hypothetical actions.

1 INTRODUCTION
Advances in natural language understanding (NLU) have engen-
dered a new generation of chatbots, voice-based intelligent as-
sistants, and conversational interfaces [3, 4, 6]. Excitement over
language-based interactions, however, has run ahead of engineer-
ing tools to support them. We propose new language constructs to
mitigate sources of complexity when designing NLU applications.

First, current NLU tools require error-prone boilerplate code. The
root problem is that they force programmers to specify a language
model twice: once in a special configuration interface, and once
in the code that processes the results from this configuration. We
propose a type-directed approach to specifying the language model,
where a single set of type declarations completely determines how
utterances are translated into structured data.

Second, natural language is ambiguous. Applications need to
provide domain evidence to help resolve user intent and choose
the best action among alternatives. We propose a new language
construct, hypothetical worlds, that lets programmers explore a
space of alternative interpretations while controlling their effects.

2 TYPE-DIRECTED NLU INTEGRATION
Modern cloud NLU services such as Wit.ai, LUIS, Dialogflow, and
Lex1 make it easy to start building a conversational interface. Con-
sider using Wit.ai to build an interface to a calendaring application
that supports scheduling, moving, and listing meetings. We first use
Wit.ai’s web-based GUI to configure the entities that the language
model should extract from these utterances. We also provide several
example messages for each command and label the entities they
contain. For example, we might enter the utterance set up a Mon-
day meeting with Valeria, classify its intent as Schedule, highlight
Valeria as a Person entity, and mark Monday as a Day entity.

The next step is to add the client code to the application. The code
needs to invoke Wit.ai on an utterance and parse the response to
dispatch to application logic. The goal for the Schedule intent might

1 http://wit.ai, http://www.luis.ai, http://dialogflow.com, http://aws.amazon.com/lex

be to call a function schedule(who, when). Ideally, Wit.ai would
translate the message ask Wei to meet Tuesday to a JSON structure
that directly corresponds to the schedule function’s signature:
{ tag: 'Schedule',

data: { who: 'Wei', when: { day: 'Tuesday' } } }

The client code could use a switch statement to dispatch to handler
functions and supply their arguments from data. The reality of
natural language makes the real response format more complex:
{ Intent: ['Schedule'], Person: ['Wei'], Day: ['Tuesday'] }

Wit.ai and similar services specify the tags for the entities, but they
do not specify how to map the entities onto function arguments.
They typically return a list of possibilities for each entity. Worse,
the lists may be empty: with insufficient training, the Person entity
might be missing altogether. The application client code has to
handle all of these possibilities to construct the correct function
call. Because this glue code is nontrivial, it can easily get out of
sync with the NLU model: the language’s type system cannot catch
a misspelling in the name of an entity, for example.

A type DSL for NLU models. We propose a domain-specific lan-
guage that eliminates this boilerplate by jointly specifying the NLU
configuration and the data types for its results. Developers can skip
the configuration GUI and write equivalent declarations in our DSL:
free-text Person; free-text Time;
keywords Day = "Sunday" | "Monday" | ... | "Saturday";
alias Date = { day: Day, time?: Time };
trait Intent =

| <Schedule> { who: Person, when: Date }
| <Move> { from: Date, to: Date }
| <List> {};

Each of the free-text, keywords, and trait keywords declare both
a type for application code and a corresponding entity in the NLU
model. The three keywords reflectWit.ai’s three search strategies for
entities. Our compiler [7] translates a DSL program into both type
declarations (in TypeScript) and a language model (for Wit.ai). For
example, this code declares a new type Person for the application,
as a type alias for string, and a Person free-text entity in the NLU
model to extract those strings. The alias keyword does not define
an entity; instead, it abstracts composite structures like Date.

Recovering structure from flat NLU data. When translating
from a Wit.ai API response to a declared type, the primary chal-
lenge is recovering nested structure. In simple cases, reconstruction
is manageable: the Schedule intent, for example, searches for a
Person entity, a Day, and an optional Time. Reconstruction becomes
more complex when the responses can be ambiguous. Consider a
response for a Move message, containing two Day entities. The NLU
engine only knows that the user mentioned two days, but it does

1

http://wit.ai
http://www.luis.ai
http://dialogflow.com
http://aws.amazon.com/lex

not have enough information to decide which Day value to match
to the from field in the Move record and which to use as the to field.

Our implementation prohibits this ambiguity by ruling out dupli-
cate entities in each trait branch. This limitation reflects Wit.ai’s flat
response format, which only tags values with entity kinds. Other
NLU services avoid this restriction by assigning entities to named
slots. In general, we find that viewing NLU toolkits through the lens
of types can reveal latent strengths and weaknesses in their expres-
siveness. In future work, we plan to explore NLU model designs
that can support a more expressive language of types.

3 HYPOTHETICAL WORLDS
A second challenge in engineering NLU interfaces is the ambiguity
of natural language. Even perfect language understanding can yield
multiple interpretations. For example, Wit.ai and similar services
are unlikely to distinguish between spoken references to Gene and
Jean or whether requesting to meet at eight refers to 8 AM or 8 PM.
Instead, Wit.ai produces multiple, weighted interpretations and
leaves the choice to the application. The examples above ignore
this uncertainty, but with help from the programming language,
applications can exploit it by combining it with domain knowledge.

We propose hypothetical worlds, a language construct that ex-
presses nondeterministic choice to search for the best choice among
a set of possible actions. In a hypothetical world, the execution
buffers effects temporarily until the program commits its changes.
Programmers can write in a natural style, as if the code were inter-
acting with the real world, but only commit to changes based on a
potential action’s outcome. There are two fundamental operations:
a hyp statement runs a block of code in a hypothetical context and
returns a world value, and a commit operation atomically applies
the effects from a world value to the currently-executing world.
Consider the following example, where the assignment to x is hy-
pothetical until world is committed:

x := 1;
world := hyp {

x := 2;
assert x == 2; // Local effects are visible.

}
assert x == 1; // The world has not yet been committed.
commit world;
assert x == 2; // The world's changes have been merged.

While hyp is useful on its own, we also use it to build higher-level
constructs for dealing with uncertainty. For example, search and
max let programs explore a set of possible alternatives, such as the
results of an NLU model. The following code parses an utterance
and hypothetically executes each possible interpretation:

interps := parse(utterance);
worlds := search (likelihood, name, time) in interps {

person := contacts.get(name);
calendar.schedule_meeting(person, time);
fitness := calendar.fitness() * likelihood;

}
commit worlds.max(fitness);

This example commits the changes from the interpretation that
maximize a fitness metric on the updated calendar. For example,
fitness might reward scheduling the meeting back-to-back with
other appointments to preserve larger free blocks for work.

Semantics of hypothetical execution. The semantics for hyp
are based on transactions and fork–join parallel programming [2].
At the beginning of a hyp block, the execution forks the program
state. Updates in each world are isolated from each other, with two
exceptions: a parent world can read weight values from its children,
like fitness above, and it may commit a child to merge its changes
into the parent world’s state. Programs can nest hypothetical worlds
arbitrarily deeply. Side effects that change the environment, such
as I/O, only take effect in the top-level world.

As in any system with partially-ordered access to shared state,
conflicting updates are possible. Our language has no explicit mech-
anism for resolving conflicts: instead, the merge fails, as in an
aborted transaction, and the program can explore an alternative. In
the case of search, this may involve falling back to the next-best
world, and attempting to merge that, and iterating until either a
feasible world is found or the entire parameter space is exhausted.

To formalize this model, we give a sampling of our operational
semantics [7] for a language with hypothetical worlds. In this se-
mantics, σ is a variable store,ω stores the state of child hypothetical
worlds, µ is a (partial) merge function, and c is a command:

⟨c,σorig,∅, µ⟩ ⇓ ⟨σhyp,ωhyp⟩

⟨u := hyp { c },σorig,ω, µ⟩ ⇓ ⟨σorig,ω[u 7→ σhyp]⟩

This rule, for hyp, executes c in the original state σorig and an empty
ω to produce a final state σhyp, which is stored in the original ω.

ω[u] = σhyp

∀v < σhyp.v < σmerge
∀v ∈ σhyp,σmerge[v] = µ (σcurr[v],σhyp[v])

⟨commit u,σcurr,ω, µ⟩ ⇓ ⟨σmerge;σcurr,ω⟩

The commit rule reads σhyp from ω, attempts to merge any changes
between it and σcurr, and concatenates the merged state to σcurr.

Distributed hypothetical execution. Like a transaction, a hypo-
thetical world publishes its effects atomically in its parent world
when it commits. This atomicity extends to interactions with the
outside world: hypothetical worlds can help synchronize accesses
to external systems and aid coordination among multiple users.
For example, a distributed calendaring system can use input from
multiple users’ calendars to arrive at a collective meeting time. To
commit the addition to all calendars simultaneously, the runtime
uses a distributed commit protocol to ensure that no user has added
a conflicting event since the process began. The system can syn-
chronize external services by layering a concurrency control shim
between it and the program with hypothetical worlds.

4 OPEN QUESTIONS AND OPPORTUNITIES
Language-based interaction engineering poses a landscape of chal-
lenges beyond the ones discussed here. Collaborative assistants
need support for secure cooperation between mutually distrust-
ful users [5]. To resolve more vexing sources of ambiguity, agents
need to iteratively refine queries through multi-turn interaction,
so languages need to support efficient incremental updates [1].
Complex ecosystems need compositionality: developers should be
able to build small behaviors within module abstractions and com-
bine them to build up larger interaction designs. Each challenge
recalls classic ideas from programming languages that are ripe for
application in this new domain.

2

REFERENCES
[1] Umut A. Acar. 2005. Self-adjusting Computation. Ph.D. Dissertation. Carnegie

Mellon University.
[2] Sebastian Burckhardt, Alexandro Baldassin, and Daan Leijen. 2010. Concurrent

Programming with Revisions and Isolation Types. In ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA).

[3] Hamza Harkous, Kassem Fawaz, Kang G. Shin, and Karl Aberer. 2016. PriBots: Con-
versational Privacy with Chatbots. In Symposium on Usable Privacy and Security
(SOUPS).

[4] IBM. [n. d.]. Watson Health. https://www.ibm.com/watson/health/
[5] Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye, and Andrew C. Myers.

[n. d.]. Fabric: a platform for secure distributed computation and storage. In 22nd
ACM Symp. on Operating System Principles (SOSP).

[6] Microsoft. [n. d.]. Bot Framework. https://dev.botframework.com
[7] Alex Renda, Harrison Goldstein, Sarah Bird, Chris Quirk, and Adrian Sampson. [n.

d.]. Opal source and semantics. https://capra.cs.cornell.edu/research/opal/

3

https://www.ibm.com/watson/health/
https://dev.botframework.com
https://capra.cs.cornell.edu/research/opal/

	Abstract
	1 Introduction
	2 Type-Directed NLU Integration
	3 Hypothetical Worlds
	4 Open Questions and Opportunities
	References

