
Tyche: In Situ Analysis of Random Testing Effectiveness (Demo)
Harrison Goldstein

University of Pennsylvania

Philadelphia, PA, USA

Benjamin C. Pierce

University of Pennsylvania

Philadelphia, PA, USA

Andrew Head

University of Pennsylvania

Philadelphia, PA, USA

Figure 1: The Tyche property-based testing interface.

ABSTRACT

Automated testing tools have adapted to increasing program complexity

by reducing the user’s role in the testing process. Approaches like

property-based testing supplement traditional unit-testing with a

mode declarative approach: rather than write traditional input-

output examples, the user writes executable specifications of their

programs. The testing framework then exercises those specifications

with randomly generated values.

However, more automated approaches to testing risk hiding too

much from the user. Current property-based testing frameworks

give insufficient feedback about the specific values that were used

to test a given program and about the distributional trends in those

values. In the worst case, this lack of visibility process may give

users false confidence, encouraging them to believe their testing

was thorough when, in fact, it had critical gaps.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

UIST ’23 Adjunct, October 29-November 1, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0096-5/23/10.

https://doi.org/10.1145/3586182.3615788

Wedemonstrate Tyche, an editor extension that recovers visibility

into the property-based testing process. Tyche provides an interactive

interface for understanding testing effectiveness, surfacing both

“pre-testing” information about test inputs and their distributions

and “post-testing” information like code coverage. The extension

is designed to work out of the box with tests written in Python’s

popular Hypothesis framework, so users can immediately start

using it to improve their testing.

ACM Reference Format:

Harrison Goldstein, Benjamin C. Pierce, and Andrew Head. 2023. Tyche:

In Situ Analysis of Random Testing Effectiveness (Demo). In The 36th
Annual ACM Symposium on User Interface Software and Technology (UIST
’23 Adjunct), October 29-November 1, 2023, San Francisco, CA, USA. ACM,

New York, NY, USA, 3 pages. https://doi.org/10.1145/3586182.3615788

1 INTRODUCTION

Property-based testing (PBT) frameworks, like the Hypothesis [6]

library in Python, allow users to specify their program’s behavior

and check that the program behaves according to that specification.

To write a property in Hypothesis, the user simply writes a function

that performs some operation on the system under test: if this

function raises an exception, the property is judged to have failed;

otherwise the property passes. Properties succinctly and declaratively

capture aspects of program correctness, with users specifying what

https://orcid.org/0000-0001-9631-1169
https://orcid.org/0000-0001-7839-1636
https://orcid.org/0000-0002-1523-3347
https://doi.org/10.1145/3586182.3615788
https://doi.org/10.1145/3586182.3615788


UIST ’23 Adjunct, October 29-November 1, 2023, San Francisco, CA, USA Goldstein et al.

(e.g., make sure this function maintains a particular invariant) to

test but not exactly how to test it (e.g., check that invariant with x,
y, z specific inputs).

Unfortunately, in practice this declarative approach presents

a rather leaky abstraction—programmers cannot always rely on

the system to figure out how best to test a given property. For

example, many properties come with preconditions: if the input

data does not fit a certain form, the test will be discarded and the

property will pass trivially. In such cases, Hypothesis can struggle

to find bugs. Most PBT frameworks have some way to mark a

test as “discarded,” and they print a warning if too many tests

are thrown away, but these messages are easy to miss. Worse,

even a generator that exclusively produces inputs that satisfy the

property’s precondition might still fail to find bugs because its

distribution is not interesting or varied enough. If the user is not

paying attention to these subtleties, they may incorrectly conclude

that their code is bug-free.

There is a fundamental interface design problem here. While

modern testing interfaces succeedwell at communicating test failures,

they fail to communicate what it means when testing “succeeds”.
Developers need interactive tools that allow them to analyze and

understand the effectiveness of passing properties, improve test

distributions that miss the mark, and gain well-founded confidence

that their final test set of properties covers the cases they care about.

Our solution is a tool called Tyche. After a brief discussion of

related work (§2), we describe the following contributions:

• We present Tyche, an editor extension that provides in-
situ visibility into PBT effectiveness, with affordances for

inspecting input distributions, exploring input examples, and

evaluating line coverage. (§3)

• We demonstrate Tyche on a common PBT case study and

show that it can help users improve their testing. It gives

feedback about inadequate testing and responds in real time

as the user updates their testing code. (§4)

• We show that Tyche also works on real-world code bases

“out of the box,” applying it in the context of a significant

Python project pulled as-is from GitHub. (§5)

We conclude with a brief discussion of future work (§6).

2 RELATEDWORK

Property-based testingwas popularized byQuickCheck [3] inHaskell.

Since then, similar libraries have appeared inmostmajor programming

languages. Hypothesis is one of the most widely used.

The vast majority of PBT frameworks work from the command

line. Hypothesis, for example provides hypothesis[cli], which
runs property-based tests and prints results to the terminal, and it

integrates with pytest [5], so properties can be checked as part

of an existing test suite. In both cases, but the latter especially,

information can get lost: test output is often hidden or de-emphasized

when tests pass.

The adjacent “fuzzing” community has some more interesting

approaches to testing feedback. For example, AFL++ [4] includes

a sophisticated TUI with feedback on code coverage and other

fuzzing statistics over time.

3 TYCHE: AN INTERFACE FOR PBT

FEEDBACK

Tyche an extension to the Visual Studio Code (VSCode) editor that

provides a new paradigm for interacting with and testing properties.

(See the screenshot in Figure 1.) The user invokes Tyche by clicking

on a button that the extension places above each property declaration

in the user’s currently open file. When clicked, the extension runs

the property: if the test fails Tyche displays the failing example;

but, more interestingly, if it passes Tyche displays a wealth of

information about the testing process that the user can use to

decide if the property is being tested properly. The current version

of Tyche integrates with Hypothesis.

3.1 Features

Tyche provides three main modes of feedback to the user.

Aggregated Test Input Trends. If a user is unsure that their test
input distribution is properly tuned to trigger interesting program

behaviors, the first step is to display aspects of the distribution

for user inspection. Tyche accomplishes by extracting numerical

features from the test inputs and displaying their trends in pre-

defined charts. For example, the user might extract the size or

height of a tree structure.

Individual Test Inputs. High level trends give the usee a broad

idea of what their input data looks like, but as users of PBT we also

find that it is helpful to simply spot-check individual examples. The

user can drill down into the trend charts by clicking on bars or pie-

chart segments, bringing them to an example view that is filtered to

those values that fall into the given bar or segment. Alternatively,

the user can simply page through examples in the order they were

generated, allowing them to quickly notice potential issues.

Code Coverage. Black-box notions of testing effectiveness like

the ones above, which do not require examining the program’s

execution or having the source code available, are simple and

effective. But in informal conversations during the initial design

process, we found that users badly wanted coverage information to

supplement the test input visualizations. Tyche displays coverage

information in two forms. Users can get a high-level view via a

simple table, summarizing the percentage of theoretically-coverable

lines that are actually covered during the execution of the property.

Then, to dig deeper, users can toggle per-line coverage information:

a line is highlighted one color if the line was covered, highlighted

another color if it was not covered, and un-highlighted it is not

coverable at all. All of this information comes Python’s coverage
library [1].

3.2 Implementation

The VSCode extension is split into two main components: the

extension itself and a webview that displays the input examples

and aggregated statistics. The extension is written in TypeScript

using the standard VSCode extension API; the webview is a React

app, also written in TypeScript. The two components communicate

via browser messages.

The extension provides code lenses that launch the webview.

When clicked, the extension runs the selected property in the

background by calling an external Python script; the output from

that script is parsed as JSON and used to generate the various



Tyche: In Situ Analysis of Random Testing Effectiveness (Demo) UIST ’23 Adjunct, October 29-November 1, 2023, San Francisco, CA, USA

visualizations provided by thewebview. In principle, this interaction

model could be adapted fairly easily to work with other languages

and PBT frameworks, although the current version is specialized

to work with Hypothesis.

4 CASE STUDY

We demonstrate Tyche’s core features on a common PBT example:

binary search trees (BSTs). BSTs are a useful example because they

are well understood but nontrivial to test. We show how Tyche

helps the user to notice and address three common difficulties that

might arise when testing an unfamiliar data structure.

The first such issue is the need for preconditions: BSTs require

their data to be ordered, but a naïve data generator will not produce

very many ordered trees. Tyche alerts the user of this issue with a

chart that indicates the proportion of the values that pass the BST

precondition, and the user can dig deeper to see that the few values

that do pass the precondition are trivial trees.

After fixing this issue by writing a better generator, the user

might still not be happy. Generators sometimes require tuning to
ensure that they produce a wide and interesting distribution of

inputs. Tyche is helpful again; this time, the user can explore the

live-updating bar charts to gauge which changes to the generator

result in the kind of data distribution they are looking for.

Finally, once the inputs to the property look good, the user can

use Tyche to validate that the property gets good code coverage

over the system under test. If they find that certain lines are uncovered,

they can either continue to tune the generator or add further

properties that exercise the un-covered code.

5 REAL WORLD

We also demonstrate Tyche in the real world. We chose to use

bidict [2], a popular Python library for bidirectional mappings

that is used extensively in industry, to demonstrate our tool. The

library already uses Hypothesis, but has not been adapted at all

to work with Tyche. By adding just two lines of code—one to

import the tyche library and one specify a feature extractor—we

can immediately jump in and start analyzing the properties as they

run.

6 CONCLUSION AND FUTUREWORK

We are excited to share this demo with the UIST community and

get feedback on our interface design. This project is still early stage:

while the current version of Tyche already seems useful, we hope

a future version can really change the way that users think about

and interact with PBT.

We plan to add a number of new affordances to Tyche.

Debugging Test Failures. The current version of Tyche simply

prints an error message if the property fails. For the moment this

is fine, as we are currently concerned with validating passing tests,

but moving forward we hope to include tools for debugging failing

tests as well. In particular, we would like to integrate our tool

with Hypothesis’s “explain mode.” Tyche could include Tarantula-

style [7] coverage feedback and present counterexamples to users

in a way that lets them easily manipulate and explore them.

Bidirectional Distribution Tuning. Tyche visualizations already
aid users when tuning their random data generators by providing

live feedback of how changes impact the distribution. But what if

the user could simply click and drag a Tyche bar chart to change

their generator’s distribution? This kind of bidirectional editing

may be possible with the help of other ongoing work in the PBT

space, and it may make PBT much more accessible to novices who

do not have experience writing data generators by hand.

However, beyond affordances, our biggest goal moving forward

is to put this interface in front of real users. The current design is

informed by our own use of PBT and PBT tools, but developers who

use Hypothesis in their day-to-day work will likely have different

ideas about which parts of Tyche are most useful and which parts

need to change.

We plan to collaborate with the maintainers of Hypothesis to

recruit for and carry out an observational user study, evaluating

the design of Tyche and looking for opportunities to make it better.

The exact parameters of the study is still up in the air, and feedback

will be welcome!

REFERENCES

[1] Ned Batchelder. 2023. coverage: Code coverage measurement for Python. https:

//github.com/nedbat/coveragepy

[2] Joshua Bronson. 2023. bidict. https://bidict.readthedocs.io/en/main/

[3] Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for random

testing of Haskell programs. In Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming (ICFP ’00), Montreal, Canada, September
18-21, 2000, Martin Odersky and Philip Wadler (Eds.). ACM, Montreal, Canada,

268–279. https://doi.org/10.1145/351240.351266

[4] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. {AFL++}

: Combining Incremental Steps of Fuzzing Research. https://www.usenix.org/

conference/woot20/presentation/fioraldi

[5] holger krekel. 2023. pytest: helps you write better programs — pytest

documentation. https://docs.pytest.org/en/7.4.x/

[6] David R MacIver, Zac Hatfield-Dodds, and others. 2019. Hypothesis: A new

approach to property-based testing. Journal of Open Source Software 4, 43 (2019),
1891. https://joss.theoj.org/papers/10.21105/joss.01891.pdf

[7] W. Eric Wong, Yu Qi, Lei Zhao, and Kai-Yuan Cai. 2007. Effective Fault

Localization using Code Coverage. In 31st Annual International Computer Software
and Applications Conference (COMPSAC 2007), Vol. 1. 449–456. https://doi.org/10.

1109/COMPSAC.2007.109 ISSN: 0730-3157.

https://github.com/nedbat/coveragepy
https://github.com/nedbat/coveragepy
https://bidict.readthedocs.io/en/main/
https://doi.org/10.1145/351240.351266
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://docs.pytest.org/en/7.4.x/
https://joss.theoj.org/papers/10.21105/joss.01891.pdf
https://doi.org/10.1109/COMPSAC.2007.109
https://doi.org/10.1109/COMPSAC.2007.109

	Abstract
	1 Introduction
	2 Related Work
	3 Tyche: An Interface for PBT Feedback
	3.1 Features
	3.2 Implementation

	4 Case Study
	5 Real World
	6 Conclusion and Future Work
	References

